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ABSTRACT

Current neural network models can process and interpret music for tasks such as melody completion 
and genre or style classification. However, previous classification tasks do not account specifically 
for distinct composition styles of different classical music periods, often focusing instead on modern 
genres. To bridge this gap, this project investigates the use of natural language processing techniques 
to classify musical excerpts from the Baroque, Classical, and Romantic periods. A curated dataset of 
samples representative of the three eras, converted to the OctupleMIDI format, was used to train a 
Sentence Transformers model to complete the classification task with maximum accuracy—62.5% when 
trained on all three categories and 90.5% when the Classical and Romantic labels were merged. These 
results indicate that the model was most effective at distinguishing Baroque music, suggesting clearer 
stylistic separation. These findings demonstrate the feasibility of using sentence-level embeddings for 
symbolic music classification, offering potential applications in musicological analysis, genre tagging 
for recommendation systems, and quantitative exploration of musical style beyond human perception.
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INTRODUCTION

Different forms of neural networks, such as recurrent 
neural networks (RNNs) and convolutional neural 
networks (CNNs), have long been used to accomplish 
tasks from sentiment classification of a sentence to 
detecting objects in an image (1). Neural networks can 

interpret human language by identifying patterns in large 
amounts of data, forming natural language processing 
(NLP) methods. The large body of unlabeled music data 
available can be translated into embeddings, or numerical 
representations, in a fashion similar to how unlabeled 
natural language is processed in NLP methods.

Building upon this foundation, within the domain of 
music, a variety of tasks including melody completion, 
harmony generation, and genre and style classification 
have been accomplished (2).

However, these tasks often center around modern 
genres like pop and rock, while applications within 
classical music have been limited. Identifying classical 
music periods can be a difficult and inconsistent task for 
humans; a study compared music history students with 
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untrained individuals in determining the period a piece 
comes from. The results demonstrated that both groups 
rely on factors like rhythm and on the ordering of the 
excerpts to determine the relative chronology of different 
compositions (3). Moreover, the divisions between 
different styles cannot always be clearly defined by year; 
the lines between periods are often blurred in the overlaps 
between chronological eras (4). Thus, specific composers 
or pieces in these junctions can only be classified based 
on their traits rather than strictly by year of composition.

As a result, this project investigates the use of natural 
language processing models to classify symbolic music 
excerpts into three key classical music eras—Baroque, 
Classical, and Romantic. A dataset of MIDI files was 
compiled, labeled by period, and converted into the 
OctupleMIDI format to represent relevant musical 
features numerically. A Sentence Transformers model 
was then trained on this data, adjusting factors such as 
learning rate and training set size to attain maximum 
classification accuracy. By leveraging the pattern 
recognition capabilities of machine learning, this 
approach offers potential applications in helping music 
historians distinguish overlapping compositional styles, 
as well as in enhancing sub-genre tagging within music 
catalogues and recommendation systems. Ultimately, 
this classification task aims to bridge the gap between 
computational methods and classical music analysis by 
investigating stylistic differences through quantitative 
embeddings rather than subjective human-identified 
trends.

LITERATURE REVIEW

Background research began with an overview of the 
Transformer architecture, introduced in the 2017 paper 
“Attention Is All You Need,” that enables the attention 
mechanism that weights elements in an input by relevance, 
much like how humans focus on certain parts of a sentence 
while reading (5). This approach is critical in the domain 
of music because each note in an excerpt is connected to 
the context of the values around it, an idea that models 
like PopMAG inherently utilize through tracking 
interdependencies within a piece of music (6). These links 
are crucial for the formation of a sensible piece of music. 
As it pertains to genre classification within classical 
music, the context surrounding each smaller section of 
an excerpt is crucial in revealing trends throughout the 
piece, contextualizing it within the musical era to which 
it belongs through common patterns in pieces of the same 
period.

One neural network designed for processing music is 
MusicBERT, based upon the BERT model, or Bidirectional 
Encoder Representations from Transformers, developed in 
2018 by Google AI Language for NLP tasks (7). Through 
testing several Google CoLab notebooks, one can clearly 
access the features BERT has to offer, including sentence 
completion (given a masked word in a sentence, BERT can 
come up with several possible or probable completions) 
and sentiment classification (BERT can tag the tone of 
a statement as positive or negative) (8, 9). Trained on 
a large amount of data, BERT takes advantage of the 
Masked Language Model and Next Sentence Prediction 
to infer a missing word or a logical next step respectively; 
additionally, it utilizes the aforementioned Transformer 
architecture (7).

MusicBERT has strong genre classification capabilities, 
outperforming previous models like melody2vec and the 
more recent PiRhDy on classification tasks (2). However, 
it is not explicitly designed to interpret classical music. 
Similarly, PopMAG is specified to only deal with popular 
music genres (6).

Within the domain of classical music, the Chamber 
Ensemble Generator has successfully expanded on the 
limited data available by generating new realistic excerpts 
of four-part Bach chorales; however, its limitation lies in 
that it is only capable of dealing with Bach chorales and 
no other styles of classical music (10).

One use case of MusicBERT is the Midiformers 
project, which enables parts of music tracks to be predicted 
after being masked, similar to the sentence classification 
task given to the standard BERT model (11). The project 
notebook illustrates the steps to use MusicBERT, including 
conversion from standard MIDI format to OctupleMIDI 
and loading the BERT and MusicBERT models. It also 
includes demonstrations of the masking task (12).

Previous research applying neural networks generally 
represents music in a MIDI (Musical Instrument Digital 
Interface) format. MIDI representation permits a smaller 
file size than an mp3 and condenses factors like tempo, 
pitch, and duration into a numerical format that a neural 
network can interpret. Often, unique MIDI configurations 
are needed when applying neural networks; for instance, 
MusicBERT uses a custom OctupleMIDI format that 
is both universal and more efficient than general MIDI 
formats (2). Similarly, in PopMAG, MUlti-track MIDI 
(MuMIDI) was created to generate simultaneous tracks 
that mesh with each other and to reduce sequence length 
(6). Out of these formats, OctupleMIDI was selected for 
this project because it is most relevant to the classification 
task.
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Nicolai, Max Reger, Jules Massenet, Carl Reinecke, and 
Nikolai Rimsky-Korsakov for the Romantic period (4).

Next, after MIDI files that could not be processed 
were removed, the size of the dataset was regulated by 
reducing each folder down to around 200 samples using 
random selection. In the end, the Baroque folder had 205 
samples (total size 3MB); the Classical folder had 186 
samples (total size 9.3MB); and the Romantic folder had 
193 samples (total size 7.4MB). Figure 1 illustrates the 
distributions of MIDI file sizes in the Baroque category (a), 
the Classical category (b), and the Romantic category (c). 
Though there were the most Baroque samples, their total 
size and median size were the least because the excerpts 
were generally brief individual movements from a shorter 
piece like a suite or chorale. In contrast, Classical and 
Romantic examples tended to be movements from longer 
pieces like sonatas and symphonies.

The number of MIDI tracks per sample in each 
category was also graphed as shown in Figure 2, with 
each track representing the sequence of notes played by 
one instrument in the piece. In general, the distributions 
of the number of MIDI tracks were skewed right, with 
a few outliers for pieces with exceptional numbers of 
instruments.

MATERIALS AND METHODS

Dataset Curation
Data was sourced from the GitHub repository 

DeepLearning4Music, which includes folders of MIDI 
files that exemplify various classical excerpts (13). The 
following folders were selected as sources of MIDI 
excerpts: “DeepLearning4Music/data/Classical Archives 
- The Greats (MIDI)” and “DeepLearning4Music/data/
Classical_www.midiworld.com_MIDIRip.”

After the data were downloaded locally, they were 
sorted by composer. Then, using a list of composers 
organized by time period, individual files were sorted 
into folders representing the Baroque, Classical, and 
Romantic eras. Composers represented include Johann 
Sebastian Bach, George Frideric Handel, Alessandro 
Scarlatti, Antonio Vivaldi, Dieterich Buxtehude, and 
Carl Philipp Emanuel Bach for the Baroque period; 
Joseph Haydn, Ludwig van Beethoven, Muzio Clementi, 
Wolfgang Amadeus Mozart, and Anton Diabelli for the 
Classical period; and Georges Bizet, Felix Mendelssohn, 
Frédéric Chopin, Niccolò Paganini, Robert Schumann, 
Jean Sibelius, Antonín Dvořák, Pyotr Ilyich Tchaikovsky, 
Sergei Rachmaninoff, Franz Liszt, Claude Debussy, Otto 

Figure 1. Histograms of MIDI file sizes by period.
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(Classical), and (c) Frédéric Chopin’s “Étude Op. 10, No. 
5 ‘Black Keys’” (Romantic). Each green row of white 
notes represents a MIDI track; from these piano rolls, one 
can observe some characteristic stylistic features like the 

Figure 3 illustrates piano roll representations of (a) 
Antonio Vivaldi’s “3rd Movement of Concerto for Violin, 
Strings and Continuo ‘La Stravaganza’” (Baroque), (b) 
Ludwig van Beethoven’s “Piano Sonata no. 15 ‘Pastoral’” 

Figure 2. Histograms of number of MIDI tracks per file by period.

Figure 3. Piano roll representations of MIDI files for Baroque, Classical, and Romantic pieces.
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containing MIDI samples was traversed and the encoded 
OctupleMIDI representations were saved individually in a 
new location. In the OctupleMIDI format, a group of eight 
numbers numerically represents time signature, tempo, 
bar, position, instrument, pitch, duration, and velocity of 
one note; each octuple is counted as one token, or unit 
of data considered at once, when the model is trained (2). 
Figure 5 shows the distribution of the number of octuples 
in each MIDI track for each category.

Then, the OctupleMIDI representations were organized 

use of complex, counterpoint harmonies in the Baroque 
piece; the distinctive use of a main melody with different 
accompaniments in the Classical piece; and the expressive 
up-and-down movement in the Romantic piece.

Dataset Representation
As shown by the flowchart in Figure 4, after 

being sorted by category, all MIDIs were converted 
to the OctupleMIDI format using the process in the 
Midiformers Google CoLab notebook (12). Each folder 

Figure 4. Data processing pipeline from MIDI download to final CSV for training.

Figure 5. Histogram of number of octuples per MIDI track per file by period.
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Training Process
An evaluation function was defined to print a confusion 

matrix as follows, where TP indicates True Positive 
(correct classification) and FN indicates False Negative 
(misclassification) as shown in Table 1. The evaluation 
function also printed the accuracy rate of the model at 
that stage using the accuracy_score() function.

Training used the machine learning framework 
PyTorch and the Adam optimizer (an algorithm to adjust 
weights and parameters to train the model). Each training 
step first zeroed gradients to ensure parameters were 
updated independently with each step. Then, a forward 
pass was conducted through the SentenceTransformer 
to convert data to embeddings and through the classifier 
to get the probability of each category being the correct 
label. Finally, predictions were compared against true 
labels with the loss function, and weights and parameters 
were adjusted through backpropagation and an optimizer 
step. The training loop was established with a number of 
epochs (complete passes through the training data) that 
was varied in later tests; at the end of each epoch, the 
evaluation function was run and a printout of the confusion 
matrix and accuracy score at that point was produced.

At the end of training, the model was tested on the 
testing dataset to print a final confusion matrix and 
accuracy score. In order to maximize accuracy after each 
trial, the following hyperparameters were modified: loss 
function, batch size, learning rate (a parameter that decides 
the amount by which the model adjusts parameters at each 
step), number of epochs, and training set size.

RESULTS

The training was first conducted with the model 
sentence-transformers/paraphrase-MiniLM-L6-v2. The 
loss function BatchSemiHardTripletLoss was used to 
train for three epochs. However, the accuracy rate was 
only 0.2216.

In Trial 1, the loss function was changed to 

into a Pandas dataframe according to HuggingFace 
specifications, with the “text” column containing 
“sentences” of OctupleMIDI octuples, and the “label” 
column containing 0, 1, or 2 for Baroque, Classical, or 
Romantic respectively. This dataframe was then saved 
as a CSV file for future use. Since the OctupleMIDI 
representation came with certain parameters represented 
as np.int8(x) instead of only x, these values were 
standardized to match the others with find and replace in 
the CSV.

Preparing for Training
Using a guide to loss functions for Sentence 

Transformers, BatchSemiHardTripletLoss was initially 
chosen as a balance between stability and efficiency that 
also accepted pairs of one “sentence” (the OctupleMIDI 
representation) and one label, matching the dataset 
format (14). Later, the loss function (a calculation of the 
discrepancy between the predicted and actual value) 
was changed to CrossEntropyLoss from PyTorch since 
BatchSemiHardTripletLoss was less appropriate for 
classification tasks such as this one; other Sentence 
Transformers for classification tasks like SoftmaxLoss 
were incompatible with pairings of one “sentence” with 
a label.

The model sentence-transformers/paraphrase-
MiniLM-L6-v2 was chosen as the base model since it was 
the default. A simple classifier head consisting of a fully 
connected linear layer was added to the base model to 
complete the classification task.

Data was read from the aforementioned CSV file. Using 
roughly a 75%-25% training-testing split, 135 examples 
per label were initially randomly separated as training 
examples with the rest as testing examples. Training and 
testing dataloaders were created with a batch size of 8—
the number of training samples simultaneously processed 
before the model updated its weights—due to the limited 
processing power available. Through experimentation, a 
batch size of 16 was found to be less effective.

Table 1. Explanation of confusion matrix of predicted and actual music period classifications
Predicted Baroque Predicted Classical Predicted Romantic

Actual Baroque TP (Baroque) FN (Baroque) FN (Baroque)
Actual Classical FN (Classical) TP (Classical) FN (Classical)
Actual Romantic FN (Romantic) FN (Romantic) TP (Romantic)
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in the confusion matrices. Using the two new categories 
(Baroque and Classical-Romantic), in trial 4, the model 
was trained on 20 epochs, learning rate 1e-2 (as through 
trials of different rates 1e-2 still performed the best), batch 
size 8, and 175 training examples; this yielded an accuracy 
rate of 0.9048. In trial 5, a more balanced testing set that 

CrossEntropyLoss and the number of epochs was  
increased to 20 with the default batch size 8, learning 
rate 2e-5, and maximum training set size of 135 samples, 
yielding an accuracy rate of 0.4716. In Trial 2, an alternative 
base model sentence-transformers/all-mpnet-base-v2 was 
tested with a batch size of 16 (other hyperparameters 
were kept the same as Trial 1), yielding an accuracy rate 
of 0.4122. Since the accuracy was lower, the base model 
was changed back to sentence-transformers/paraphrase-
MiniLM-L6-v2. Confusion matrices resulting from the 
configurations in Trial 1 and Trial 2 are illustrated in 
Table 2, where accurate predictions are bolded.

Next, different values of learning rate were changed: 
1e-5, 1e-4, 1e-3, 1e-2, and 1e-1. Keeping epochs (10), batch 
size (8) and training set size (135) constant, accuracy 
increased from 1e-5 to 1e-2, then dropped at 1e-1, as 
shown in Table 3.

In Trial 3, keeping the optimal learning rate of 1e-2, 
the number of training examples was increased to 175, 
with batch size still at 8. 20 epochs of training produced 
the confusion matrix shown in Table 4, where accurate 
predictions are bolded, yielding an accuracy rate of 
0.6250.

This value corresponds to the values of precision, 
recall, and F1-score per label shown in Table 5. Using TP/
TN/FP/FN to represent true positives/true negatives/false  
positive/false negatives respectively, precision 𝑃 is 

 ; recall 𝑅 is ; and F1-score is the 

harmonic mean of precision and recall, .

Since a higher accuracy was unlikely to be obtained 
through solely modifying hyperparameters, the Classical 
and Romantic labels were combined into one category. 
These two groups were the most frequently misidentified 

Table 2. Confusion matrices from Trials 1 and 2
Trial 1 Trial 2

Predicted 
Baroque

Predicted 
Classical

Predicted 
Romantic

Predicted 
Baroque

Predicted 
Classical

Predicted 
Romantic

Actual 
Baroque 42 11 16 Actual 

Baroque 5 13 36

Actual 
Classical 13 13 24 Actual 

Classical 0 13 22

Actual 
Romantic 9 20 28 Actual 

Romantic 0 6 36

Table 3. Accuracies with different learning rates
Learning Rate Accuracy

1e-5 0.5
1e-4 0.5284
1e-3 0.5739
1e-2 0.5795
1e-1 0.4318

Table 4. Confusion matrix for Trial 3
Predicted 
Baroque

Predicted 
Classical

Predicted 
Romantic

Actual Baroque 21 7 1
Actual Classical 1 6 3
Actual Romantic 1 8 8

Table 5. Precision, recall, and F1-score per label for Trial 3
Label Precision Recall F1-score

Baroque 0.913 0.7241 0.8077
Classical 0.2857 0.6 0.3871
Romantic 0.6667 0.4706 0.5517

TP
TP + FP

TP
TP + FN

2×P×R
P+R
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long-short-term memory networks (LSTMs) were also 
tested, but they proved less effective, only attaining an 
accuracy rate of 0.7651 with the two categories merged. 
Fine-tuning a large language model like ChatGPT was 
also considered; however, because of the large amounts 
of data once processed in OpenAI’s specified format, this 
kind of fine-tuning would be less practical.

Compared with past studies like MusicBERT which 
classified music genres excluding classical sub-genres, 
training Sentence Transformers proved less effective. 
This discrepancy may be partially because of similarities 
of all pieces within the general classical label; a statistical 
analysis of sonatas across all three periods reveals the 
total number of notes, maximum intervals reached, and 
number of raised and lowered notes remain consistent 
across 17th to 19th century music (15). By contrast, modern 
genres like R&B and rock are much more distinct from 
each other; modern genres are also significantly different 
from classical music.

The model consistently distinguished Baroque music 
from Classical and Romantic music. Even with three 
categories, the model demonstrated an F1 score of 0.8077 
for Baroque music, compared to 0.3871 and 0.5517 for 
Classical and Romantic respectively (Table 5). When a 
balanced testing set of Baroque and Classical-Romantic 
examples were used, more similar F1 scores of 0.8438 and 
0.8214 were obtained (Table 6).

This ability to differentiate Baroque music from 
Classical and Romantic music aligns with trends 
established by musicologists. Because many of the key 
features of Baroque music—complex counterpoint and 
rigid forms like toccata and fugue—were largely replaced 
by less strict harmonies and new forms like concertos and 
sonatas in the Classical period, these two genres tend to 
be easy to differentiate; meanwhile, the Romantic period 

included fewer Classical-Romantic selections was used, 
yielding an accuracy rate of 0.8333. The corresponding 
confusion matrices (accurate predictions bolded) and 
precision, recall, and F1-scores per label in Trials 4 and 5 
are shown in Table 6.

DISCUSSION

Out of the hyperparameter combinations tested, 
the most effective used the model sentence-trans-
formers/paraphrase-MiniLM-L6-v2, the loss function 
CrossEntropyLoss, 20 epochs of training, batch size 8, a 
maximum of 175 training examples, and a learning rate of 
1e-2. This set of values allowed a maximum accuracy of 
0.6250 with three classes (Table 4), and 0.9048 with two 
classes (Table 6).

As expected, more training examples led to higher 
accuracy, as the model had more data to work with and 
discern trends from. Similarly, more epochs of training 
led to higher accuracy, as more epochs lent the model 
more opportunities to learn from the data and adjust 
parameters accordingly. The increase and decrease in 
the learning rate could also be expected; up to a certain 
point, increasing the learning rate will improve accuracy 
by helping the model update parameters faster and 
converging to a solution.

However, an overly high learning rate would lead to 
overfitting—where the model can accurately predict 
the class that samples in the training data belong to, but 
cannot generalize these trends to new examples it has not 
encountered before—or to overshooting the point of the 
optimal parameters, leading to a suboptimal solution (1).

In relation to the original topic of inquiry, the BERT-
adjacent Sentence Transformer model was effective in 
classifying genres of classical music. Other models like 

Table 6. Confusion matrices and precision, recall, and F1-scores per label for Trials 4 and 5
Trial 4

Predicted Baroque Predicted Classical-Romantic Precision Recall F1-score
Actual Baroque 18 11 0.6207 0.6207 0.6207
Actual Classical-Romantic 11 191 0.9455 0.9455 0.9455

Trial 5
Predicted Baroque Predicted Classical-Romantic Precision Recall F1-score

Actual Baroque 27 3 0.7941 0.9 0.8438
Actual Classical-Romantic 7 23 0.8846 0.7667 0.8214
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the_First_Time.ipynb (accessed on 2025-04-14).
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gram). Available from: https://colab.research.google.com/
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on 2025-04-14).
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built upon trends present in previous compositions while 
allowing for looser expressionism, making it more similar 
to the Classical period (3). There are also more composers 
in the Classical and Romantic periods whose compositional 
activity crosses the chronological boundaries between the 
two periods, providing evidence there may be stylistic 
overlaps between Classical and Romantic (4).

Further improvements can be made by experimenting 
with more models under Sentence Transformers; 
increasing the amount of training data; filtering selected 
excerpts for pieces most representative of their time period; 
and eliminating selections that could be ambiguously 
classified between two eras to a human listener.

CONCLUSION

To alleviate the lack of models focusing on genre 
classification within classical music, this project attempted 
to train Sentence Transformers models to sort classical 
music pieces, converted from MIDI to the OctupleMIDI 
format, into Baroque, Classical, and Romantic era 
compositions. With a maximum achieved accuracy score 
of 0.6250 for 3 eras and 0.9048 for 2 eras, this approach 
was partially effective in identifying classical music 
eras. With further improvement, this classification task 
could prove helpful to musicologists when it is difficult 
to distinguish styles that exhibit characteristics of 
similar musical periods manually; to music cataloguing 
or recommendation services in identifying and tagging 
classical music genres; and for further investigations into 
quantitative differences between sub-genres of classical 
music as opposed to trends identified by the human ear.
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