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ABSTRACT

Mechanical design materials are integral to advancing modern technologies due to their diverse 
mechanical properties. These properties are crucial in determining the material’s suitability for various 
engineering applications. However, research on mechanical materials often encounters missing data, 
which can lead to biased results and reduced statistical power. While several imputation methods exist 
to handle missing data, there is a lack of focused studies evaluating their performance in the context 
of mechanical materials. To address this gap, a comprehensive dataset was obtained, and 10% of the 
original data for ultimate tensile strength (Su) and yield strength (Sy) were intentionally deleted. Four 
imputation methods—mean imputation, random fill, regression imputation, and k-nearest neighbors 
(KNN) imputation—were employed to restore the missing data. The performance of these methods 
was evaluated using Pearson’s correlation, multiple linear regression, and permutation feature 
importance. The results showed that mean and KNN imputation methods provided the closest match 
to the original data, while regression imputation also performed well with minor deviations. Random 
fill was the least reliable method. These findings provide guidance on selecting appropriate imputation 
techniques for mechanical materials datasets, ultimately improving the robustness of future research.
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applications. Key properties such as yield strength, elastic 
modulus, shear modulus, and tensile strength determine 
how these materials respond under stress and strain during 
operation. The diverse mechanical characteristics of these 
materials allow for their use in different applications, 
from high-strength steel in construction and automotive 
industries to lightweight alloys in aerospace engineering. 
Understanding the mechanical behavior of materials is 
essential for optimizing performance, ensuring safety, and 
enhancing the durability of machine components, making 
material selection a vital aspect of the design process.

Previous research has extensively explored the 
mechanical properties of materials due to their critical 

INTRODUCTION

Machine design materials play a critical role in 
advancing modern technologies across various industries. 
These materials, which include steel, brass, aluminum, and 
a wide range of alloys, are selected based on their unique 
mechanical properties that suit specific engineering 
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importance in machine design and structural applications. 
Studies have focused on analyzing the behavior of various 
materials under different stress conditions to understand 
how properties like yield strength, tensile strength, 
elastic modulus, and shear modulus affect performance 
and durability. For instance, research on steel alloys 
has shown how variations in carbon content and heat 
treatment processes can significantly alter mechanical 
properties, enhancing both strength and ductility for 
specific applications (1). Similarly, investigations into 
aluminum alloys have highlighted their lightweight 
characteristics combined with sufficient tensile strength, 
making them ideal for aerospace and automotive industries 
where weight reduction is crucial (2). Additionally, 
studies on composite materials have demonstrated the 
potential for superior mechanical properties, such as 
increased toughness and fatigue resistance, compared to 
traditional metals (3). These investigations underscore 
the importance of understanding and optimizing material 
properties to improve performance, safety, and efficiency 
in engineering designs.

A common existing in the above-mentioned studies 
is the requirement for high-quality, complete datasets to 
draw accurate and reliable conclusions. Unfortunately, 
many research efforts are hindered by missing data, which 
can occur due to experimental limitations, equipment 
failures, human error, or insufficient sample sizes. Missing 
data can significantly impact the validity of research, as 
incomplete datasets may lead to biased results or reduced 
statistical power. As a result, numerous studies have been 
dedicated to addressing the issue of missing data and 
developing effective methods to handle it. For example, 
Rubin’s seminal work on missing data mechanisms 
introduced key strategies such as missing completely at 
random (MCAR), missing at random (MAR), and missing 
not at random (MNAR), which have been foundational in 
guiding imputation methods (4). Additionally, modern 
approaches like multiple imputation, introduced by Schafer 
and Olsen (5), and machine learning-based methods such 
as k-nearest neighbors and regression imputation have 
been applied to restore data integrity and improve the 
reliability of research conclusions. These methods, aimed 
at filling gaps in datasets, have become essential in fields 
where missing data is a frequent obstacle, ensuring that 
research findings remain robust and accurate despite 
incomplete information.

Although a wide range of methods to handle missing 
data exist, there remains a significant gap in studies that 
rigorously evaluate the performance of these methods, 
particularly in the field of mechanical materials. To 

address this gap, the author obtained a comprehensive 
mechanical materials dataset, encompassing various 
mechanical properties, and intentionally deleted portions 
of the data to simulate missing values. These missing data 
were then imputed using several alternative methods. 
The performance of each imputation method was 
evaluated from multiple perspectives, including accuracy, 
preservation of data relationships, and impact on model 
performance. The primary aim of this paper is to provide a 
detailed assessment of these imputation techniques in the 
context of mechanical materials, offering insights into the 
most reliable methods for restoring incomplete datasets. 
The expected benefit of this study is to guide researchers 
in selecting the most appropriate imputation methods for 
mechanical property datasets, ultimately improving the 
reliability and robustness of research in this field.

Data Description
The dataset used for this research is available on 

Kaggle, thanks to the efforts of Nawale (6). The original 
dataset includes detailed information on various material-
related properties, as outlined in Table 1.

Table 1. The Variables Included in the Material Dataset
No. Variables Definitions

1 ID Unique Identification code for the 
Material

2 Name Material Name (e.g., Steel SAE 1015)
3 Su Ultimate Tensile Strength in MPa 
4 Sy Yield Strength in MPa 
5 E Elastic Modulus in MPa
6 G Shear Modulus in MPa 
7 mu Poisson’s Ratio in Units of Length
8 Ro Density in Kg/m3 
9 A5 Elongation at Break or Strain as a 

Percentage
10 Heat_Treat Heat Treatment Method
11 BHN Brinell Hardness Number in 

Microhardness Units
12 pH Pressure at Yield in MPa
13 Desc Description of the Material
14 HV Vickers Hardness Number 
15 Std The applicable consensus standards for 

products (e.g., The American National 
Standards Institute – ANSI)
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In Table 1, the first eight variables have complete 
observations for all 1,552 entries (ID, Name, Su, Sy, 
E, G, μ, and ρ). However, given the objectives of this 
study, the variables ID and Name were considered less 
relevant for analysis and thus excluded. Consequently, 
six key variables—Su, Sy, E, G, μ, and ρ—were retained 
for evaluation. To introduce missing data and simulate 
real-world conditions, the Su and Sy variables were 
randomly reduced by 10%. These variables were selected 
due to their relatively even distribution and narrower 
range compared to the others, providing a more robust 
platform for evaluating different methods of handling 
incomplete data. Additionally, eight observations were 
removed due to the lack of specific values for Sy, where 
only the maximum value was specified without precise 
measurements. Ultimately, the final dataset consists 
of 1,544 observations. Detailed information for both 
the complete and partial datasets used in this study is 
presented in Table 2.

Table 2 presents a comparative analysis of the complete 
and partial datasets used in the study. The complete dataset 
includes 1,552 observations, while the partial dataset 
reflects the same variables after the removal of 10% of 

data for the Su and Sy variables and the exclusion of eight 
observations with incomplete Sy values, resulting in 1,544 
observations. For both datasets, the key variables Su, Sy, 
E, G, μ, and ρ are presented with their respective means, 
standard deviations, and range (maximum and minimum 
values). The comparison shows minimal differences 
between the complete and partial datasets, with slight 
variations in the means and standard deviations of Su 
and Sy due to the introduced missing data. Notably, the 
other variables (E, G, μ, and ρ) remain unchanged, as they 
were fully observed in both datasets. This table serves to 
illustrate the impact of the missing data on the statistical 
properties of the variables selected for analysis.

METHODS

In this research, two types of methods are employed. 
The first type focuses on handling missing data, while the 
second type is used to compare the statistical performance 
differences between the complete and partial datasets. 
Although numerous approaches exist for addressing 
missing data, four methods were deliberately selected 
for this study: mean imputation, K-Nearest Neighbors 

Table 2. Descriptive Statistics of Both Complete and Partial Datasets
Complete Dataset

Variable Mean Standard Deviation Max. Min.
Su 574.32 326.95 2220.00 69.00
Sy 387.76 290.04 2048.00 28.00
E 164356.87 56201.22 219000.00 73000.00
G 85627.85 125650.62 769000.00 26000.00

mu 0.30 0.02 0.35 0.20
Ro 6925.02 2119.58 8930.00 1750.00

Partial Dataset 
Variable Mean Standard Deviation Max. Min.

Su 569.47 325.33 2220.00 69.00
Sy 391.79 293.59 2048.00 28.00
E 164356.87 56201.22 219000.00 73000.00
G 85627.85 125650.62 769000.00 26000.00

mu 0.30 0.02 0.35 0.20
Ro 6925.02 2119.58 8930.00 1750.00

Notes: 1. Max.=Maximum value; Min.=Minimum value. 2. See Table 1 for the 
definition of Variables.



Handling Missing Data for Mechanical Materials

November 2024    Vol. 2 No 4    American Journal of Student Research    www.ajosr.org 15

(KNN) imputation, random imputation, and regression 
imputation. The first method, mean imputation, represents 
a central tendency approach, filling in missing values 
with the mean of the available data. KNN imputation, 
a machine learning method, uses local data patterns to 
predict and fill in missing values based on the nearest 
neighbors. Regression imputation applies simple statistical 
regression models to estimate the missing values. Lastly, 
random imputation fill the missing data by using some of 
the randomly selected data, which tends to serve as the 
base imputation one. The details of both types of methods 
are discussed in the following subsections.

Missing Data-Handling Methods
Mean Imputation. Mean imputation is a widely used 

method for handling missing data, where the missing 
values are replaced by the arithmetic mean of the observed 
values for a given variable. This approach assumes that 
the missing data is missing at random and that the central 
tendency of the data can adequately represent the missing 
values. The imputed value, x for a missing data point is 
calculated using the equation (7):

                                                                                    1)

where xj represents the observed data points, and n is 
the total number of observed values for that variable. 
Mean imputation is simple and computationally efficient, 
making it useful in scenarios where quick estimations are 
required. However, it can underestimate the variability 
in the dataset and potentially lead to biased statistical 
estimates, as it does not account for the inherent uncertainty 
associated with missing values. Despite these limitations, 
mean imputation remains a common technique due to its 
ease of implementation.

KNN Imputation. K-Nearest Neighbors (KNN) 
imputation is a machine learning-based method for 
handling missing data, leveraging the structure and 
proximity of the data to estimate missing values. In this 
method, the missing value for a particular data point 
is imputed by examining the k-nearest observations 
(neighbors) that are most similar to the incomplete data 
point, based on a predefined distance metric such as 
Euclidean distance. For a given missing value ​, the imputed 
value is calculated by taking the weighted average of the 
nearest neighbors, as expressed by the equation (8):

                                                                                    2)

where Ni represents the set of k-nearest neighbors for the 

i-th data point, and xj is the observed value of the j-th 
neighbor. The algorithm assumes that similar data points 
share similar values, thus making the nearest neighbors 
a good reference for estimating missing data. One of the 
key advantages of KNN imputation is that it preserves 
the inherent relationships and patterns within the dataset. 
However, it can be computationally expensive, especially 
for large datasets, and its accuracy depends heavily on the 
choice of k and the distance metric used.

Regression Imputation. Regression imputation is a 
statistical method that predicts and fills in missing data 
by using the relationships between the variables in the 
dataset. In this method, a regression model is built with 
the observed data to predict the missing values based 
on the available predictors. In this study, missing values 
for Su​ (ultimate strength) and Sy (yield strength) are 
imputed using the predictors E (modulus of elasticity), G 
(shear modulus), μ (Poisson’s ratio), and ρ (density). The 
regression imputation can be formulated as (9):

Su, Sy = β0 + β1E + β2G + β3μ + β4ρ + ε                       3)

where β0 is the intercept, β1, β2, β3, β4 are the regression 
coefficients, and ϵ represents the error term. This method 
provides estimates for the missing values by leveraging 
the linear relationship between the dependent variables 
Su​ and Sy​ and the predictor variables E, G, μ, and ρ. 
Regression imputation is advantageous as it accounts 
for the interdependencies between variables, producing 
more accurate estimates compared to simpler methods 
like mean imputation. However, its accuracy depends on 
the strength of the underlying relationships between the 
variables.

Random Imputation. Aside from the above three 
methods, random imputation is an alternative one used to 
fill in missing data by randomly selecting observed values 
from the complete dataset to replace the missing entries. 
This approach assumes that the missing data is missing 
completely at random, meaning that the probability of 
data being missing is independent of both observed 
and unobserved data. The general equation for random 
imputation can be expressed as (10):

Ximputed = Xobserved for a randomly selected value from  
                    Xobserved                                                                              4)

Where Ximputed​ represents the imputed value and Xobserved​ 
is the set of observed values from which a random value 
is selected. This method does not rely on relationships 
between variables, and as a result, it can introduce more 

xi = xjn∑
n
j=1

1︿

̂

xi = xjk ∑ j ϵ N
1︿

i
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variability and potential bias, particularly if the data is 
not missing completely at random. Although random 
imputation maintains the distribution of observed data, 
it can weaken relationships between variables, as the 
imputed values are not based on the actual structure of 
the data. This can lead to lower predictive accuracy and 
weaker performance in model evaluations, as reflected 
by the lower correlation with the original dataset in 
the current study. Thus, random imputation is often 
considered less reliable and serve as the base imputation 
method in the present research. 

Performance Evaluation Method
Once the missing data are created by using various 

missing data-handling methods, their performances are 
then needed to be assessed from different perspectives. 
For more reliable results, the assessment methods include 
three alternative ones which are correlation analysis 
of individual variables, multiple linear regression, and 
feature importance ranking. The details are presented in 
order as follows.

Correlation Analysis. To assess how closely the 
simulated Su and Sy data match the actual Su and Sy data, 
Pearson’s correlation analysis is conducted. This method 
is selected due to the numerical nature of both datasets and 
its ability to quantify linear relationships between them. 
Pearson’s correlation coefficient (denoted as r) measures 
the strength and direction of a linear relationship between 
two variables, with values ranging from -1 to 1. A value 
of 1 indicates a perfect positive correlation, -1 indicates 
a perfect negative correlation, and 0 suggests no linear 
correlation.

The formula for Pearson’s correlation coefficient is 
(11):

                                                                                    5)

Where:
•	X and Y are simulated and actual values for Su and 

Sy, respectively.
•	X and Y are the mean values of X and Y.
Before applying Pearson’s correlation, the assumptions 

of the test are considered: (1) both variables should be 
continuous and normally distributed, (2) the relationship 
between the variables should be linear, and (3) the absence 
of outliers is assumed as they can disproportionately 
affect the correlation coefficient. The correlation between 
the actual and simulated Su and Sy data is calculated 
for each missing data-handling method. To facilitate 
interpretation, the results are presented as a correlation 

coefficient matrix plot, enabling a clear visual comparison 
of the correlations for different methods.

Multiple Linear Regression Analysis. In addition to 
the correlation analysis between simulated and actual Su 
and Sy, linear regression models are developed for both the 
simulated and actual Su and Sy data. The models utilize 
common predictors, including E (modulus of elasticity), 
G (shear modulus), μ (Poisson’s ratio), and ρ (density). 
The primary objective of this modeling is to evaluate how 
closely the simulated data approximates the actual data in 
terms of predictive performance.

Linear regression is a statistical method used to model 
the relationship between a dependent variable (Su or Sy) 
and one or more independent variables (E, G, μ, and ρ). 
The general form of a simple linear regression model is 
(12):

Y  =  β0 + β1X1 +  ···  +  βnXn + ε                                                                                   6)

Where:
•	Y is the dependent variable (Su or Sy),
•	 β0 is the intercept,
•	β1​,β2​,…,βn​ are the regression coefficients associated 

with each predictor variable X1, X2, …, Xn,
•	ε is the error term, representing the deviation of the 

actual values from the predicted ones.
To ensure the validity of the linear regression models, 

several key assumptions are checked which include 
linearity, independence, homoscedasticity and normality. 

Permutation Feature Importance Analysis via 
Neural Network. To rank the importance of features 
for predicting Su and Sy, a simple feedforward neural 
network is employed using the Keras framework. The 
feature importance is computed using permutation feature 
importance, a model-agnostic method that evaluates how 
much the neural network’s performance deteriorates when 
the values of a specific feature are randomly shuffled. 
This approach allows for the assessment of each feature’s 
contribution to the model’s predictions, as the greater the 
decrease in model performance after shuffling a feature, 
the more important that feature is deemed to be.

The neural network consists of an input layer, one or 
more hidden layers with nonlinear activation functions 
(such as ReLU), and an output layer. The network is 
trained to minimize the loss function (e.g., mean squared 
error, MSE) between the predicted and actual values of 
Su and Sy. The general structure of the model can be 
represented as (13):

 y = f (W * X + b)                                                                                   7)

r = 
∑ (X – X)(Y – Y)

∑ (X – X)2∑(Y – Y)2
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Figure 1. Histogram Plots of Su for both Complete and 
Partial Datasets.

dataset (right plot) shows a more clustered distribution, 
with a sharper peak at the lower Su values and a more 
pronounced decline at higher values. This suggests that 
while the overall shape of the distribution is preserved, the 
missing data may have resulted in a slight compression of 
variability in the Su values, particularly for larger values.

Figure 2 presents histogram plots for Sy from both the 
complete and partial datasets. The complete dataset (left 
plot) shows a similar pattern to Su, with a peak around 
lower Sy values (between 250 and 500) and a smooth 
tapering as Sy increases. The partial dataset (right plot), 

Where:
•	y is the predicted output (Su or Sy),
•	X is the input matrix containing the features (e.g., 

E,G, μ, and ρ),
•	W is the weight matrix learned during training,
•	b is the bias term,
•	f is the activation function applied at each layer.
Permutation feature importance is calculated by 

first measuring the baseline performance of the trained 
model using a suitable evaluation metric, such as MSE. 
For each feature Xi ​, the values are randomly shuffled, 
and the model’s performance is re-evaluated. The feature 
importance score I(Xi) for feature Xi is computed as:

I(Xi) = MSEshuffuled          MSEbaseline                                                                          8)

Where:
•	MSEshuffled​ is the model’s performance (MSE) after 

shuffling feature Xi​,
•	MSEbaseline​ is the model’s baseline performance before 

shuffling any features.
A larger difference between MSEshuffled​ and MSEbaseline​ 

indicates that the model’s performance is highly 
dependent on that feature, signifying greater importance. 
This method assumes that the model is well-trained and 
the features are not highly correlated (multicollinear), 
which could otherwise affect the accuracy of the feature 
importance rankings. Using this approach, the features 
E, G, μ, and ρ can be ranked in terms of their relative 
importance for predicting Su and Sy, providing valuable 
insights into which variables have the strongest influence 
on the neural network’s predictions. This information is 
essential for understanding the underlying relationships in 
the data and optimizing the model for better performance.

RESULTS

Further Comparison between Complete and 
Partial Datasets

Based on the previous discussion, 10% of the original 
Su and Sy data were removed. Before evaluating the 
performance of the simulated data using different 
imputation methods, the originally complete and partial 
datasets for Su and Sy are first compared visually using 
histograms, as shown in Figures 1 and 2.

Figure 1 presents histogram plots for Su from both 
the complete and partial datasets. In the complete dataset 
(left plot), the distribution is fairly smooth, with a peak 
around lower Su values (between 250 and 500) and a 
gradual tapering as Su increases. In contrast, the partial 

_
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the partial data preserves well the central tendencies of 
Su and Sy, some deviations exist in the representation 
of higher values, where the incomplete may exhibit less 
variability.

Correlation Analysis Results of various 
Imputation Methods

Pearson’s correlation analysis is the first method 
selected to evaluate the performance of the three 
imputation methods used to fill the 10% missing data 
for Su and Sy. Pearson’s correlation coefficient, which 
measures the strength of the linear relationship between 
two datasets, allows for a quantitative comparison of the 
imputed data against the original. To facilitate easy visual 
comparison, a correlation matrix plot was generated based 
on the correlations between the original data and each of 
the four imputation methods (mean, random, regression 
and k-nearest neighbors) for both Su and Sy. The results 
are displayed in Figures 3 and 4.

Figure 3, which shows the correlation matrix for 
Su across the different datasets, demonstrates that the 
k-nearest neighbors (KNN) imputation method achieved 
the highest correlation with the original Su data, with 
a correlation coefficient of 0.99. This indicates that the 
KNN method closely mirrors the original dataset. The 
regression imputation method also performed well, 
achieving a correlation of 0.96 with the original Su data. 
On the other hand, the random fill method exhibited a 

however, shows a sharper peak and a more abrupt drop-
off at higher Sy values. This pattern indicates that, while 
the partial dataset generally captures the central tendency 
of Sy, the tails of the distribution—particularly at higher 
values—may not be as well represented in the complete 
dataset.

Overall, in both figures, the partial dataset exhibits a 
more concentrated distribution around the lower values, 
with less variability in the higher range compared to the 
complete dataset. These phenomena suggest that while 

Figure 2. Histogram Plots of Sy for both Complete and 
Partial Datasets.

Figure 3. Correlation Matrix Plots of Su for Original and 
Other Datasets.
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Regression Analysis Results of various 
Imputation Methods

The impact of different imputation methods on model 
performance was further evaluated using a multiple 
linear regression model. The modeling results for both the 
original and simulated data for Su and Sy, under different 
imputation methods (mean, random, regression, and 
k-nearest neighbors), are presented in Table 3. This table 
includes the coefficients and p-values for each variable 
(E, G, μ, and ρ) across the various datasets, allowing 
for a detailed comparison of how closely the simulated 
data replicates the relationships observed in the original 
dataset.

For Su, the regression results indicate that, across 
all imputation methods, the variable μ (Poisson’s ratio) 
consistently contributes the most to the model, with 
coefficients ranging from 361.7 to 538.8, depending on the 
imputation method used. The original dataset’s coefficient 
for μ is 377.2, and the mean imputation method yields the 
closest match, with a coefficient of 376.5, followed by the 
regression imputation method with a coefficient of 383.3. 
On the other hand, the random fill method produces the 
largest deviation, with a μ coefficient of 538.8, indicating 
that this method is the least reliable in terms of reproducing 
the original data’s structure. The p-values for μ across 
all methods remain relatively high, suggesting limited 
statistical significance for the prediction of Su. Variables 
E, G, and ρ consistently have coefficients and p-values of 
0.0, indicating that they do not significantly contribute to 
the prediction of Su, regardless of the imputation method 
used.

For Sy, similar trends are observed. The variable μ 
again shows the most significant contribution to the model, 
with coefficients ranging from 148.4 (original dataset) 
to 259.3 (random fill). As with Su, the mean imputation 
method yields the closest match to the original dataset, 
with a coefficient of 192.6, followed by the regression 
imputation method at 230.4. The random fill method 
results in the largest discrepancy, with a coefficient of 
259.3, while the k-nearest neighbors (KNN) imputation 
method produces a coefficient of 207.5, falling between 
the mean and regression methods. However, the p-values 
for μ remain relatively high across all methods, indicating 
that μ is not statistically significant for predicting Sy 
under these models. Similar to Su, the other variables—E, 
G, and ρ—show no significant influence, with coefficients 
and p-values of 0.0 across all imputation methods.

In end, the mean imputation method provides the 
closest match to the original dataset for both Su and Sy, 
followed by the regression imputation method. The random 

lower correlation of 0.89, indicating that it had the least 
similarity to the original data. The mean imputation 
method scored a correlation of 0.94, placing it between the 
random and regression methods in terms of performance.

Figure 4 presents the correlation matrix for Sy across 
the same datasets. Similar to Su, the KNN method achieved 
a perfect correlation with the original Sy data, registering 
a coefficient of 1.0, indicating that it most accurately 
replicated the original distribution. The regression method 
followed closely with a correlation of 0.99, demonstrating 
its ability to effectively fill the missing data for Sy. The 
mean imputation method performed reasonably well with 
a correlation of 0.96, while the random fill method again 
showed the lowest correlation at 0.91, signifying more 
noticeable deviations from the original dataset.

Overall, the correlation matrix plots highlight that the 
KNN imputation method consistently provided the closest 
match to the original Su and Sy data across both figures, 
followed by the regression imputation method. The mean 
imputation method also performed satisfactorily, though 
it showed slightly lower correlations. The random fill 
method, however, displayed the weakest performance in 
replicating the original data, as indicated by the lower 
correlation coefficients. These findings suggest that the 
choice of imputation method has a significant impact on 
the ability to preserve the original data’s relationships, 
with KNN and regression imputation methods being the 
most reliable in this case.

Figure 4. Correlation Matrix Plots of Sy for Original and 
Other Datasets.
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in Figures 5 and 6, the mean imputation method and KNN 
Fill closely mirror the original dataset’s feature importance 
structure, indicating that these methods effectively 
maintain the relationships between the input features and 
the target variables. Regression Fill also performs well 
but exhibits some minor shifts in importance. In contrast, 
the random fill method introduces significant distortions, 
with feature importance rankings deviating substantially 
from the original dataset. Therefore, when considering 
feature importance preservation, mean imputation and 
KNN Fill are more reliable methods compared to random 
fill, with regression fill providing a middle ground.

CONCLUSIONS 

This study evaluated the performance of various 
imputation methods—mean imputation, random fill, 
regression imputation, and k-nearest neighbors (KNN) 
imputation—for handling missing data in mechanical 
materials datasets. After deleting 10% of the original 
data, these methods were assessed based on Pearson’s 
correlation, multiple linear regression, and permutation 

fill method, in contrast, consistently shows the largest 
deviations from the original data, making it the least 
reliable method. These results highlight the importance 
of selecting appropriate imputation techniques to ensure 
the accuracy of regression models when handling missing 
data.

 
Permutation Feature Importance Analysis Results of 
various Imputation Methods

To compare the performance of the simulated datasets 
(Mean Fill, Random Fill, Regression Fill, and KNN 
Fill) with the original dataset for Su and Sy, a simple 
feedforward neural network model using Keras  was 
trained. The model consisted of two hidden layers: the first 
with 64 neurons and the second with 32 neurons. After 
training the model on both the original and simulated 
datasets, permutation feature importance was applied to 
evaluate how much the model’s performance decreased 
when each feature was randomly shuffled. This provides 
insights into the importance of each feature in predicting 
Su and Sy.

In both Su and Sy feature importance rankings as shown 

Table 3. Linear Regression Model Results for Original and Simulated Datasets
Linear Model Results for Su

  Original Mean_Fill Random_Fill Regress._Fill KNN_Fill

 Var. Coef. P Coef. P Coef. P Coef. P Coef. P
const -107.0 0.3 -62.8 0.5 -116.0 0.3 -110.1 0.3 -90.3 0.4
E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
G 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
mu 377.2 0.2 376.5 0.2 538.8 0.1 383.3 0.2 361.7 0.2
Ro 0.0 0.2 0.0 0.3 0.0 0.6 0.0 0.2 0.0 0.1

Linear Model Results for Sy
  Original Mean_Fill Random_Fill Regress._Fill KNN_Fill

 Var. Coef. P Coef. P Coef. P Coef. P Coef. P
const -17.3 0.9 7.8 0.9 -33.5 0.8 -44.6 0.7 -37.9 0.7
E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
G 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
mu 148.4 0.6 192.6 0.5 259.3 0.4 230.4 0.4 207.5 0.5
Ro 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Notes: 1. Var.=Variable; Coef.=Coefficient; P=P-value. 2. See Table 1 for the definition of Variables. 3.constant 
represents the model intercept.
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Figure 5. Feature Importance Ranking Plots of Su for Original and Simulated Datasets.

Figure 6. Feature Importance Ranking Plots of Sy for Original and Simulated Datasets.
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feature importance to compare their ability to replicate 
the original dataset’s structure. The following conclusions 
from the results can be obtained:

•	Mean imputation consistently provided the closest 
match to the original dataset for both Su and Sy, 
performing well in terms of correlation and model 
performance, making it a reliable and computationally 
efficient method.

•	KNN imputation achieved the highest correlation 
with the original data and preserved feature 
importance rankings, making it ideal for cases 
where high fidelity is critical, though it can be 
computationally intensive.

•	Regression imputation offered a balance between 
accuracy and simplicity, performing well but with 
minor deviations compared to mean and KNN 
methods.

•	Random fill was the least reliable method, 
introducing significant deviations from the original 
data and disrupting feature importance, and is not 
recommended for applications where accuracy is 
crucial.

The associated recommendations can also be made:
•	Mean imputation is recommended for most 

applications due to its balance of simplicity and 
performance.

•	KNN imputation should be used when preserving the 
original data structure is essential, despite its higher 
computational cost.

•	Regression imputation is suitable for cases requiring 
a compromise between accuracy and computational 
efficiency.

•	Random fill should be avoided in contexts where 
preserving data integrity is critical.

Future research should explore more advanced 
imputation techniques and evaluate the effects of different 
missing data patterns to further optimize data handling in 
mechanical materials research.
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