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ABSTRACT

Predicting molecular properties is a crucial task in the chemical sciences. Recently, there has been 
an enormous focus on leveraging machine learning to predict various molecular properties ranging 
from solubility to reaction rates. This study develops machine learning models to predict the hydration 
energy of molecules, comparing the performance of a neural network (Multi-Layer Perceptron) and 
an ensemble learning model (Random Forest). Using descriptors generated by RDKit and Mordred, 
we aimed to identify the optimal molecular representations for predictive accuracy. The FreeSolv 
database of 642 molecules provided experimental hydration energy data for training and testing. The 
models were evaluated using mean squared error (MSE) and the coefficient of determination (R²), 
with the Multi-Layer Perceptron achieving an R² above 0.9, outperforming the Random Forest model. 
Results suggest that the neural network model, in combination with RDKit descriptors, offers a strong 
balance between accuracy and computational efficiency. This study demonstrates the potential for 
simpler machine learning models to accurately predict molecular properties, supporting broader 
applications in chemistry where computational resources are limited.
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complex challenges. From retrosynthesis predictions 
to molecule discovery, AI is playing an integral role in 
streamlining and enhancing research and development. 
According to Mitsubishi Tanabe Pharma, scientists have 
been able to use AI to analyze vast amounts of data, 
coming from complex databases of AI’s transformative 
role in chemistry, enabling breakthroughs in drug 
discovery, molecular property prediction, and structural 
analysis, revolutionizing R&D efficiency.

However, such large-scale modeling requires 
substantial compute time and data to develop. These models 
are costly to run and are hosted on powerful systems that 
drain both power and space, reducing the deployability of 

INTRODUCTION

Artificial Intelligence (AI) has become a powerful tool 
for innovation in the field of chemistry, with numerous 
applications that are transforming how chemists approach 



Comparing Neural Networks and Ensemble Models for Predicting Hydration Energy

December 2024    Vol. 2 No 4    American Journal of Student Research    www.ajosr.org 184

Figure 1. Distributions of (A) Molecular Weight and (B) 
Hydration Energy within FreeSolv.

AI in industry. Experts predict that by 2030, the average 
production-ready model would take 200X (5.4 Gigawatts) 
of the stated power, or 30% of all power currently used 
by data centers (1). Powerful, large-scale AI models 
require substantial computational resources to operate 
on a regular basis, posing deployability challenges. To 
address this, simpler models like Random Forest and 
Multi-Layer Perceptron (MLP) can balance performance 
with efficiency. A Random Forest Regressor is known for 
its performance enhancement for datasets that have both 
numerical and categorical features (2).  An MLP model is 
a fully connected neural network, which is theoretically 
able to model any non-linear patterns. In the context 
of chemistry, the representation of molecules is just as 
critical to the success of predictive models as the choice of 
algorithm. In the field of computational chemistry, there 
are two leading descriptor calculators: RDKit (3) and 
Mordred (4).

A specific application of AI in chemistry is molecular 
property prediction, where a molecular structure is 
mapped to an output property. Recent work has explored 
predicting numerous properties, including solubility, 
ionization potential, electron affinity, and hydration energy.
(5–8) Hydration energy refers to the energy released when 
ions dissolve in water, forming intermolecular bonds with 
water molecules and creating a hydration shell around 
ions. This process is pivotal in understanding the behavior 
of aqueous ions in pharmaceutical and environmental 
contexts. 

Overall, this paper aims to create machine learning 
models that are able to predict the hydration energy of 
molecules, evaluating the prediction accuracy of both 
neural networks and an ensemble learning model , while 
also evaluating the use of two RDKit and Mordred 
featurizers on generating the molecular representations 
that provide optimal performance. To accomplish this 
comparison of both models and descriptor calculators, 
we will leverage the FreeSolv database, a comprehensive 
account of 642 molecules, with accounts of their 
experimental hydration energies; The database is used 
often in research in development of models that predict 
hydration energy using alternate methods - typically more 
complex ones, in order to achieve a more accurate result, 
with one such paper assessing the property based on 
Molecular Density Functional Theory (9). The objective 
of this comparison and the development of the model 
in general is to create a model that aims to utilize either 
one of these models to create an accurate extrapolation 
prediction model, with a coefficient of determination 
value of above 0.9.

MATERIALS AND METHODS

Dataset and Tools
This study used the FreeSolv database (642 molecules) 

with molecular weights from 5 to 500 g/mol (Figure 1A) 
and hydration energies ranging from –35 to 5 kcal/mol 
(Figure 1B).

To achieve the goal of finding the best model to 
predict these hydration energies, I used Python’s Sci-kit 
Learn package to appropriately manage the dataset as 
well as the model training. To generate a list of features, 
I selected Python’s RDKit package, a popular choice in 
the community for its efficiency among other options. 
For the sake of comparison, I also utilized Mordred for 
feature calculation, which is a less popular choice due to 
its inefficiency, as evidenced by its calculation of 1800 
two and three dimensional features. 
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Data Splitting and Preparation
The dataset was split into 80% for training the models, 

and 20% for testing the models, ensuring that the models 
were tested on unseen data. A Bemis-Murcko Scaffold 
split ensured diversity in training and testing data, with 
SMILES strings converted to molecule objects, each 
scaffold uniquely represented. Finally, all the unique 
scaffolds were mapped back to their original molecule 
objects, which were then fed into a featurizer method that 
returned a list of 208 features for the molecule (Figure 2).

Feature Selection
Feature selection was performed using a combination 

of Variance Threshold and SelectKBest within 
GridSearchCV to refine the dataset by identifying the most 
relevant features for predicting Hydration Energy. The 
Variance Threshold is a simple feature selection technique 
that removes features with low variance, meaning those 
that do not vary significantly across samples. Features 
with very low variance often do not contribute useful 
information to the model and can introduce noise. The 
method eliminates features below a certain variance 
threshold, ensuring only those with sufficient variability 
are retained (10). SelectKBest is another feature selection 
method that ranks features based on their correlation with 
the target variable and retains only the top K features. 
It uses statistical tests like ANOVA F-values or chi-
squared tests (for classification problems) to assess how 
strongly each feature correlates with the target variable. 
The f_classification scoring metric was employed in both 
methods to evaluate and select features with the highest 
predictive power. 

Metrics
Model performance was assessed using mean 

squared error (MSE), which measures the average 
squared differences between predicted and actual values, 
penalizing larger errors for robustness. The Coefficient of 
Determination (R²) was also used to evaluate correlation 
strength between predicted and actual values, offering 
insight into overall model accuracy.   

RESULTS

Model Performance
The MLP model performed best, achieving an MSE 

of 5.35 and an R² of 0.91, outperforming more complex 
models like Density Functional Theory predictions. Its 
R² value indicates that 91% of the variance in hydration 
energy was explained, showing a strong correlation 
between predicted and actual values, with parity plots 
closely clustering around the 45-degree line. The MLP’s 
higher feature selection through grid search enhanced its 
accuracy compared to Random Forest, which tested fewer 
features. While R² indicates correlation strength, MSE 
was also used to highlight performance differences more 
effectively (Figure 3 and Figure 4).

Featurizer Comparison
In addition, the top performing model was tested with 

features calculated with both RDKit as well as Mordred, 
and its inclusion and description are discussed above. 
However, as seen in the figure above, we can see no 
significant difference between the two featurizers and 
their performance in enhancing the model. While this 
does not show the superiority of one feature selection 
tool over the other - despite RDKit taking significantly 
less time (Table 1), it does provide evidence that there is 
no feature that contributes to the prediction of hydration 
energy that is so specialized that it is only available in one 
of the two feature selection sets. 

Feature Importance
According to the beeswarm graphs, the most important 

feature that the MLP regressor considered when making 
its predictions is the PEOE_VSA1 feature - as seen by its 
highest mean absolute SHAP value. The feature is one 
that is impossible to decipher through just the codename 
it is given without specific background understanding 
on naming conventions, as well as complex chemical 
concepts. Essentially, VSAX features were one of three 
libraries created by Paul Labute, that would be useful 
in Quantitative Structure-Activity Relationship (QSAR) 

Figure 2. Preprocessing workflow.
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Figure 3. Results of Random Forest Models. Left (A) has an R2 of 0.87. Right (B) has an R2 of 0.89.

Figure 4. Results of the MLP models. Left (A) has an R2 of 0.82. Right (B) has an R2 of 0.91.

Table 1. Comparison of RDKit and Mordred descriptor calculators
Metric RDKit Mordred

Accessibility Imported through conda or pip Can only be imported through pip
Number of Descriptors ~1800 ~640
Performance (on 4 cores) 5 minutes 37 seconds to calculate the 

descriptor list for all FreeSolv Molecules
24 hours 10 minutes to calculate the descriptor 
list for all FreeSolv Molecules.

Documentation Extensively maintained Limited
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Studies (11). VSA is short for Van der Waals Surface 
area, while PEOE stands for partial equalization of 
orbital electronegativity. PEOE-VSA descriptors describe 
the properties of chemical bonds rather than the atomic 
numbers or weights in molecular structures (12).  Overall, 
the feature aims to quantify the surface area contributed 
by different atoms, considering their partial charges x. 
This connects to a molecule’s Surface Area, to consider 
its interactions with water. Solvent Accessible Surface 
Area (SASA) is defined by the area of the surface of the 
molecule that is available to react with its corresponding 
solvent. This means that a larger SASA value indicates a 
great surface area available to interact with the solvent. 
This directly correlates to how easily a water shell can 
form around the molecule. If it is more difficult to form 
a water shell, more energy will be required to form it, 
resulting in less energy that can be released. Because this 
applies to all molecules, this is generated as one of the 
most important factors considering hydration energy, as 
agreed with the MLP results.

According to both plots in Figure 4, the second most 
valuable feature is BCUT2D_LOGPHI. This feature 
comes from the BCUT2D descriptor set, which is a set 
of molecular descriptors used to represent the two-
dimensional structure and topological features of a 
molecule in cheminformatics (12). According to the 
Royal Society of Chemistry, the LOGPHI feature is 
described as the highest eigenvalue weighted by crippen 
logP (13). In this context, an eigenvalue represents a 
scalar that indicates how much a given feature or vector 
is stretched or scaled during a linear transformation. 
When applied to molecular data, eigenvalues help identify 
key characteristics, like the most influential chemical 
properties, that are important for predicting behaviors 

such as hydrophobicity (14). Essentially, the feature 
describes the spatial distribution of hydrophobicity within 
the molecule, or a molecule’s ability to repel water. This 
is an interesting next-best valued feature, since the PEOE-
VSA feature was related to how the molecule interacts 
with water. However, this analysis may be inaccurate 
as hydrophobicity complements hydrophilicity, which 
describes a water-attracting property. A low LOGPHI 
value indicates a distribution that favor’s water attraction, 
increasing interactions between molecules and the water 
solvent they are dissolved in, once again greatly varying 
the hydration energy, through the explanation of Solvent 
Accessible Surface Area seen above.

In addition, the emphasis on valence electrons and 
accountancy for natures of all bonds is able to record 
the distribution of partial charges across the molecules, 
and  brings in the importance of partial charge and dipole 
moments, a pivotal factor when considering hydration 
energy. The significance of Dipole Moments comes from 
its interaction with water. The property itself highlights 
its polarization and separation of negative and positive 
charges that concentrate at each end of the molecule. 
Similarly, water is known to be a common polar solvent, 
signifying a more significant interaction with another 
polar molecule through their dipole-dipole interactions. 
Therefore, higher dipole-moment-molecules tend to 
dissolve in water more easily, and water molecules have an 
easier and less energy-inducing experience surrounding 
the molecule. This significantly affects the hydration 
energy, as it is primarily determined by how much energy 
is required to break intramolecular forces, as well as the 
difficulty to surround the molecule. 

The model’s ability to capture these complex 
interactions through features like Chi1v and PEOE-VSA 

Figure 5. Beeswarm plot of features, as well as a plot of absolute mean impact.
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et al., show promise for capturing complex molecular 
interactions across a wider range, especially for low-
value predictions (19). By incorporating interaction terms 
between descriptors, as seen in models like QMex-ILR, 
these next-generation models could overcome limitations 
faced by simpler approaches.

Despite this, simplistic models like the one showcased 
here can achieve comparable results to more complex 
ones while using fewer computational resources. This 
emphasizes the portion of AI models in industry that 
tend to be overlooked—those focused on fundamental 
machine learning algorithms available through Python 
packages. The stability of molecular properties, which do 
not change as frequently as data in other fields, supports 
the use of these simpler models in chemistry research, 
as they can be built on pre-existing datasets without 
needing new training sets from scratch. For example, 
researchers recently used an AI-driven approach to search 
for molecules with large polarizability and electronic 
gaps, identifying new pathways in chemical space with 
unexpected molecular structures (20). However, the 
limitations of simpler models become evident when 
predicting more complex molecular properties, which 
leads us to consider more advanced techniques.

CONCLUSION

Overall, I found that the MLP regressor had the overall 
best performance out of the two models tested. It has a 
coefficient of determination value of over 0.9, and an MAE 
< 2, meeting our original performance targets. These 
results demonstrate the superiority of neural network-
based models over ensemble learning methods such as 
Random Forest Regressor.

For future research, models can be taken from other 
packages such as TensorFlow, which while not having 
the same fundamental models that are available in 
Scikit Learn. The use of simpler models in industry is 
a concept that should be explored further as a result of 
the performance discussed above, and the wide array of 
models available across multiple packages and languages, 
that may surprise the industry with their efficiency and 
effectiveness. Furthermore, OpenAI is one of the largest 
developers of AI currently, so tools developed by them 
could be very real competitors when evaluating the use of 
AI in Chemistry. By comparing these advanced models 
with foundational methods from Scikit-Learn or custom-
built models, researchers can evaluate both the accuracy 
and scalability of AI in real-world experimental R&D, 
potentially driving significant advancements in the field.

demonstrates its effectiveness in predicting hydration 
energy. Specifically, it utilized features that were expected, 
beforehand, to have a decently strong correlation with 
hydration energy, with logical explanations on the 
molecular level that detail the interactions between 
molecules and water.

DISCUSSION

Other work has attempted to predict hydration energy 
on FreeSolv using quantum mechanical methods, with 
high accuracy (9, 15). For example, utilizing Hypernetted 
Chain Approximation (HCA) a Pearson R value of 0.93 
was achieved, matching the accuracy of free energy 
calculations, while reducing the computation time 
from hundreds of CPU hours to two CPU minutes per 
molecule (9). Another work used Molecular Density 
Functional Theory, also achieved a Pearson R value 
of 0.9 (16).  Despite being vastly more complex in the 
methodologies chosen, these models perform similarly to 
the MLP model made above.  To compare, R² indicates 
correlation strength, while MSE penalizes larger 
errors, offering complementary insights into model 
performance. Although the MLP model shows a weaker 
MSE than more complex techniques, it processes data 
significantly faster—taking only a fraction of a second 
per molecule, compared to models like the HCA model 
at 2 CPU minutes per molecule.  Even within the realm 
of more elementary models, The MLP’s interconnected 
neurons capture complex, non-linear patterns, enhancing 
accuracy for intricate datasets. In contrast, decision tree-
based models, which average outputs from multiple trees, 
are better suited for simpler relationships but may miss 
deeper complexities (17).

Our analysis revealed weaker model predictions for 
lower hydration energies, a trend seen across studies using 
the FreeSolv dataset, such as one utilizing an implicit 
solvent model done by the Technical University of Munich, 
which clearly demonstrates weaker predictions in lower 
ranges due to a lack of data (18). As shown in the left-
skewed distribution of Panel B, Figure 1.1, and highlighted 
by the parity plots in Figures 2.1 and 2.2, fewer molecules 
are reported in lower hydration ranges, limiting predictive 
accuracy for these values. This data limitation, rather than 
model performance, accounts for the reduced accuracy 
in lower ranges, underscoring the need for an expanded 
dataset. Updating FreeSolv or creating larger datasets 
would improve model accuracy and address data scarcity 
challenges in chemical research. Advanced models, like 
the Graph Neural Networks (GNNs) from Shimakawa 
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