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ABSTRACT

Game theory provides a robust framework for analyzing strategic decision-making, and Rock-
Paper-Scissors (RPS), despite its simplicity, serves as an effective model due to its balanced structure 
and broad applicability. This study evaluates the performance of nine RPS strategies—ranging 
from random and fixed patterns to adaptive techniques—through pairwise matchups simulated over 
multiple rounds. Statistical tools, including Moving Average (MA), Cumulative Sum (CUSUM) 
Control Chart, and Decay-Weighted (DW) Metrics, assess each strategy’s stability and adaptability 
in individual match pairs and overall outcomes. Results show that adaptive strategies focusing on 
recent history, such as multi-round observation and certain reaction-based techniques, excel in long-
term performance by precisely adapting to opponents’ behavioral shifts while avoiding overreactions 
to minor variations. These findings highlight the critical importance of adaptability in optimizing 
decision-making in competitive environments.
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Research Article

game theory is not just a trusted ally when lifting a 
trophy; it is also the root of your joy in the thrill of 
victory. Acting as an invisible supporter, it guides players 
through intricate challenges, uncovering the best paths to 
success. For instance, in poker, strategic bluffing creates 
uncertainty, giving players a critical edge (1). In sports, 
game-theoretic models support real-time decisions that 
enhance performance (2). Similarly, in finance, dynamic 
strategies inspired by these principles allow investors 
to adapt to market changes and maximize returns (3). 
These examples illustrate how this framework bridges 
theory and practice, making it a cornerstone of success in 
competitive environments.

RPS is a timeless game tied to childhood memories, 
celebrated for its simplicity and accessibility. Requiring 
only hand gestures, it allows players to participate 

INTRODUCTION

Imagine standing at a crossroads in a competitive 
game, where each decision could mean victory or 
defeat - this is where game theory takes center stage. By 
breaking down the complexities of strategic interactions, 
it enables individuals and teams to navigate competition 
with confidence and make informed choices. Figuratively, 
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anywhere, making it universally appealing. While often 
seen as a quick and fair decision-making tool, RPS also 
involves subtle strategies that challenge players to think 
quickly and adapt. Its fairness ensures equal chances 
of success for players of all backgrounds. Beyond its 
simplicity, RPS serves as a valuable platform for exploring 
game-theoretic strategies. Its straightforward rules are 
ideal for studying decision-making processes, equilibrium 
strategies, and dynamic adjustments (4). When extended 
to multi-round games, RPS reveals how strategies evolve 
over time, offering insights into long-term optimization 
(5). Additionally, it supports experimental research by 
enabling effective hypothesis testing and model validation 
(6, 7). This unique mix of simplicity and strategic depth 
makes RPS an excellent tool for advancing game theory 
in both theory and practice.

While RPS is widely recognized, research on how 
strategies perform and adapt in multi-round confrontations 
remains limited. Understanding how strategies evolve, 
interact, and sustain effectiveness over time is essential for 
optimizing decision-making in competitive environments. 
This study addresses this gap by examining the nuanced 
behavior of strategies across progressively increasing 
rounds, offering valuable insights into their adaptability, 
stability, and long-term potential.

To achieve this, nine different RPS strategies are 
explored, including random moves, fixed patterns, 
and adaptive techniques, each designed to respond to 
specific gameplay situations. Detailed descriptions of 
these strategies are provided in Table 1 in the following 
chapter. Simulations systematically evaluate strategy 
performance across early, middle, and late rounds in 
pairwise matchups and overall outcomes. By capturing 
both short- and long-term trends, the data reveal how 
strategies adjust and evolve over time. Metrics, primarily 
win rates, form the basis for statistical analysis. Using 
tools such as MA, CUSUM Control Chart, and DW 
Metrics, trends across gameplay phases are assessed, 
focusing on stability and adaptability. This research 
underscores the critical role of adaptability in achieving 
long-term success and highlights optimization potential 
for improving strategic decision-making in dynamic 
systems.

METHODS AND MATERIALS

Purpose of Simulation
Simulation serves as the foundation of this study, 

providing a controlled and scalable environment to evaluate 
the performance of RPS strategies. By systematically 
reproducing interactions between strategies, the 

simulation generates robust and reproducible data that 
captures performance trends over time.

RPS, with its simple rules and constrained state space, 
is particularly well-suited for simulation-based analysis. 
These characteristics allow for exhaustive exploration 
of strategic interactions while ensuring the data remains 
representative of all possible states and outcomes (8). 
Moreover, simulations allow for repetitive experiments 
under controlled conditions, enhancing the statistical 
significance and reliability of findings. These strategies 
can be programmed and simulated to assess their 
performance in different contexts (9). Simulation also 
allows the researcher to control variables in the experiment, 
such as the number of rounds and participants’ strategy 
choices, which provides for a systematic exploration of 
the dynamic relationships between strategies (10).

This research leverages these advantages to examine 
diverse RPS strategies. Simulations enable precise control 
over variables such as the number of rounds and pairing 
rules, offering insights into how strategies evolve and 
perform across different phases of gameplay. The low-
cost, risk-free nature of simulation further facilitates 
large-scale data collection without the ethical or logistical 
concerns of human experimentation (11).

Through this approach, simulation provides a 
comprehensive dataset that serves as the basis for analyzing 
long-term optimization potential and dynamic strategy 
interactions. These findings contribute to advancing both 
theoretical and practical applications of game theory in 
competitive scenarios.

Simulation Design
The simulation is structured to evaluate the performance 

of distinct RPS strategies across progressively increasing 
rounds. This design ensures a systematic analysis of both 
short-term behavior and long-term adaptability, providing 
insights into how strategies perform and evolve over time.

Strategies Overview. The nine strategies analyzed in 
this study represent a diverse range of decision-making 
approaches. Fixed strategies, such as constant and 
sequential, serve as baselines for examining predictable 
and static behaviors. Reactive strategies, including mirror, 
reverse mirror, reaction, and exclusion, directly respond 
to opponents’ most recent move. Adaptive strategies, such 
as probability-weighted and multi-round observation, 
incorporate learning and make dynamic adjustments 
over multiple rounds to respond to opponents’ evolving 
tendencies. Table 1 provides detailed definitions and 
example scenarios for each strategy, illustrating their 
distinct mechanisms and how they function during 
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gameplay.
Game Setup. The simulation follows a round-robin 

format where each strategy competes against every other, 
including itself, in pairwise matchups. This systematic 
approach ensures comprehensive evaluation of all possible 
interactions. Matches are conducted over progressively 
increasing rounds, ranging from 10 to 1,000 in increments 
of 10, capturing both short-term performance and long-
term adaptability. The 1,000-round limit balances the 
need to observe trends with computational efficiency, 
as extending to 10,000 rounds adds minimal additional 
insights while increasing costs.

Before each match, strategies are initialized to ensure 
fair conditions. During gameplay, strategies follow 
predefined rules, with results recorded for each round. 
Matchups such as Strategy A vs. Strategy B and Strategy 
B vs. Strategy A are treated equivalently to simplify 
evaluation. The total 45 unique pairings calculated using  
n (n+1) / 2 for n = 9, include self-pairings, which are 
addressed separately in the analysis.

This controlled simulation design enables the collection 
of comprehensive performance data, systematically 
examining strategy interactions to provide a strong 
foundation for detailed analysis.

Key Metrics. The simulation generates raw 
performance data for each pairing between strategies, 
focusing on metrics that quantify effectiveness across 
varying rounds. 

The primary metric at this stage is the Pairing Win 
Rate (PWR), which represents the percentage of rounds 
a strategy wins in a specific pairing. It is calculated as  

                                                           . This metric reflects 
how well a strategy performs against a specific opponent 
during a single game, forming the foundation for further 
analysis. 

Another recorded metric, the Pairing Draw Rate 
(PDR), captures the percentage of rounds that end in a 
draw. While PDR is not analyzed in this study, it offers 
potential for future research, particularly in exploring 

Table 1. Strategy Definitions and Example Scenarios
Strategy (Abbr.) Definition Example Scenarios

Random (Rndm) Randomly selects a move each round, providing a 
baseline for unpredictability.

Opponent: Rock → Random selects Rock, 
Paper, or Scissors randomly.

Constant (Const) Makes the same choice every round, representing a 
fixed strategy.

Constant chooses Rock every round, regardless 
of opponent’s move.

Sequential (Seq) Cycles through moves in a set order, such as rock, 
paper, scissors.

Opponent: Rock → Sequential plays Paper 
(next in sequence).

Mirror (Mirr) Copies the opponent’s last move in each round. Opponent: Paper → Mirror plays Paper (copies 
opponent’s move).

Exclusion 
(Excl)

Excludes the opponent’s last move from its own 
choices, aiming to be less predictable.

Opponent: Scissors → Exclusion plays Rock or 
Paper (excludes Scissors).

Reaction 
(React)

Counters the opponent’s previous move with the 
corresponding winning move.

Opponent: Paper → Reaction plays Scissors 
(counters Paper).

Reverse Mirror 
(RevMirr)

Plays a move that would lose to the opponent’s last 
move, using a counterintuitive approach.

Opponent: Rock → Reverse Mirror plays 
Scissors (loses to Rock).

Probability-Weighted 
(ProbWt)

Selects a move based on the frequency of 
the opponent’s previous choices to maximize 
effectiveness.

Opponent frequently plays Rock → ProbWt 
likely chooses Paper.

Multi-Round 
Observation (MRO)

Identifies patterns over multiple rounds and adapts 
moves based on observed opponent behavior.

Opponent: Scissors in previous 3 rounds → 
MRO plays Rock (based on pattern).

Note: Abbreviations are derived from strategy names, with the first letter capitalized for clarity, except for MRO, which is presented 
in uppercase as an acronym. The MRO strategy observes the last 3 rounds, while ProbWt considers all prior moves, testing the 
difference in responsiveness among adaptive strategies.

𝑃𝑃𝑃𝑃𝑃𝑃 = ( Number of Wins
Total Rounds Played) × 100 
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match pair ID, player ID, and strategy abbreviation, as 
well as performance metrics like wins, draws, and PWR. 
This two-rows-per-matchup format supports detailed 
and scalable analysis while maintaining flexibility for 
potential future research involving multiplayer scenarios.

The dataset’s structure is defined by two types of 
fields: identifiers and metrics. Identifiers help track the 
players and strategies involved in each simulation, while 
metrics quantify performance outcomes. These elements 
are detailed in Table 2a and Table 2b.

To illustrate the raw data structure, a sample dataset is 
presented in Table 3 below. Each row corresponds to one 

strategies that frequently result in ties.
These raw metrics are directly derived from the 

simulation results and provide the groundwork for 
calculating higher-level metrics, such as Win Rate 
Disparity (WRD) and Overall Win Rate (OWR), in 
subsequent stages of the analysis.

Data Summary
The simulation produces a structured dataset 

capturing the outcomes of pairwise interactions between 
strategies. Each row represents one player’s perspective 
in a specific match pair, including identifiers such as 

Table 2a. Identifiers for Simulation Results
Field Type Description Example

Match Pair ID Categorical Identifier for each pairwise matchup in the simulation, representing the 
combination of strategies.

12

Player ID Categorical Identifier for the player within a specific match pair (e.g., PL1 for  
Player 1).

PL1

Strategy Abbreviation Categorical Abbreviation for the strategy used by each player. Refer to Table 1 for 
definitions of strategy abbreviations.

Rndm

Table 2b. Metrics for Simulation Results
Metric Type Description Range Example

Rounds Per Game (RPG) Integer The pre-defined number of rounds played in each matchup. [10, 20, ...,1000] 10
Wins (wins) Integer The number of rounds won by the player in the matchup. [0, RPG] 3
Draws (draws) Integer The number of rounds that ended in a draw. [0, RPG] 5
PWR Float Percentage of rounds won by the player in the matchup, 

calculated as .
[0.00, 100.00] 30

PDR Float Percentage of rounds that ended in a draw, calculated as . [0.00, 100.00] 50
To illustrate the raw data structure, a sample dataset is presented in Table 3 below. Each row corresponds to one player’s perspective 
in a match pair.

Table 3. Sample Dataset from Simulation Results
Match Pair ID RPG Player ID Strategy Abbr. Wins Draws PWR (%) PDR (%)

16 10 PL1 Rndm 3 3 30 30
16 10 PL2 React 4 3 40 30
78 340 PL1 RevMirr 108 109 31.76 32.06
78 340 PL2 ProbWt 123 109 36.18 32.06
45 680 PL1 Mirr 190 231 27.94 33.97
45 680 PL2 Excl 259 231 38.09 33.97
39 1000 PL1 Seq 332 335 33.2 33.5
39 1000 PL2 MRO 333 335 33.3 33.5
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player’s perspective in a match pair.
The dataset forms the foundation for evaluating 

strategy performance, offering granular insights through 
PWR and broader trends via metrics like OWR and 
WRD. Its structure supports current analysis and allows 
for future extensions, such as multiplayer scenarios or 
additional metrics.

Data Preprocessing
The preprocessing phase transforms raw simulation 

data into a structured dataset by excluding self-pairing 
matchups, where a strategy competes against itself. 
Although included in simulations for completeness, self-
pairings were removed to focus on meaningful pairwise 
comparisons.

From the cleaned dataset, WRD, or Disparity, was 
derived to measure performance gaps between competing 
strategies. Defined as WRD = PWR1 − PWR2, where 
PWR1 and PWR2 are the PWRs of player 1 and player 
2, WRD evaluates both the magnitude and direction of 
differences. A positive WRD indicates the first strategy 
outperformed the second, while a negative value indicates 
the opposite.

The second metric, OWR, provides a summary of a 
strategy’s performance across all pairings, excluding self-
pairings. OWR is computed as the average of all PWR 
 
values for a strategy:                       . This metric 
offers a holistic view of a strategy’s effectiveness against 
various opponents.

RPG values were segmented into three phases: Early 
(10–330 rounds), Middle (340–670 rounds), and Late 
(680–1,000 rounds). This framework facilitates analysis 
of initial performance adjustments, transitional behaviors, 
and eventual stabilization, providing a comprehensive 
view of strategy dynamics.

Fundamental Statistical Tools
Basic statistical measures, such as Mean and Standard 

Deviation (Std.), are foundational for quantifying the 
central tendencies and variability of key outcomes. These 
metrics provide the groundwork for assessing strategy 
performance and understanding overall trends, serving as 
a basis for further analysis.

Heatmaps, a widely used tool in data visualization, are 
employed to explore interaction trends between strategies. 
By representing both the magnitude of disparities and 
their variance as color gradients, heatmaps provide an 
intuitive way to identify relative strengths, weaknesses, 
and unexpected patterns in match pair dynamics (12).

Error Bar Charts serve to represent the mean and 
variability of results for each strategy. By showing 
confidence intervals or standard deviations, this tool 
enables a straightforward comparison of the reliability 
and effectiveness of strategies across matchups (13).

These methods lay the groundwork for more advanced 
analyses, such as performance trends over time and 
adaptability assessments, which are discussed in 
subsequent sections.

Advanced Analytical Techniques
Moving Average. The MA is a widely used statistical 

tool for analyzing trends in time-series data, smoothing 
fluctuations over a fixed observation window to highlight 
consistent patterns while filtering out short-term noise. At 
 
time, the MA is computed as                                  , 
where N is the number of periods over which the average 
is calculated. This technique effectively distinguishes 
random noise from genuine shifts, making it particularly 
valuable for robust monitoring and trend analysis in 
dynamic contexts (14, 15).

The Moving Average Stability Index (MASI) 
quantifies stability by evaluating variability in smoothed 
metrics over a defined observation period. MASI is  
 
calculated as           , where    
 
xi represents the smoothed value at the i-th observation,  
x is the mean of these values, and n is the number of 
observations in the window. Lower MASI values indicate 
greater stability with minimal fluctuations, while higher 
values signify variability and potential instability (16, 17).

MA was applied to analyze trends in win rates, the 
CUSUM of win rates, and win rate disparities, capturing 
patterns of consistency and variability. MASI was 
employed to assess phase-specific stability for win rates 
(early, middle, and late phases) and long-term stability for 
the CUSUM of win rates across all rounds. Lower MASI 
values in win rates indicated consistent performance 
under varied conditions, while higher values suggested 
significant variability.

Cumulative Sum. The CUSUM Control Chart, 
introduced by E.S. Page in 1954, is a statistical tool 
designed to detect shifts in the mean level of a process 
over time. It is widely used in quality control, finance, and 
industrial monitoring due to its ability to identify small, 
persistent shifts more effectively than traditional control 
charts (14, 15). While its sensitivity to gradual changes is a 
strength, it can also lead to false alarms in high variability 

OWR = ΣPWR
Total Matchups 

𝑀𝑀𝑀𝑀(C𝑡𝑡) =
1
𝑁𝑁 Σ𝑖𝑖=𝑡𝑡−𝑁𝑁+1𝑡𝑡 𝐶𝐶𝑖𝑖 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = √1
𝑛𝑛 ∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥)2

𝑛𝑛

𝑖𝑖=1
 

−
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It is calculated as ,     where  Xi    represents  
 
the observed value at time i, and wi are decay-adjusted 
weights. This averaging method enhances sensitivity to 
recent trends, making it particularly suited for systems 
undergoing rapid changes.

Metrics derived from DW average enable deeper 
analyses. The DW Slope (S) leverages linear regression 
principles to measure the rate of change in a decay-
weighted context. 

It is expressed as     , where   
 
t and X denote the weighted means of time indices and 
observations, respectively. This slope quantifies trends in 
dynamic processes, indicating acceleration, deceleration, 
or stabilization.

The Adaptability Index (AI) measures variability in 
decay-weighted values over time, capturing the extent of 
a system’s dynamic adjustments. It is computed as AI =  
σ ( DW ( CUSUM ( Xt ) ) ), where σ  is the Std. and CUSUM  
( Xt ) represents the cumulative sum of observations at time 
t, weighted using the decay function. Higher AI values 
suggest frequent and substantial adjustments, while lower 
values indicate steadier, less reactive behaviors.

In this research, decay-weighted metrics are employed 
to analyze two critical aspects of strategic behavior in 
RPS, with Xi representing win rates. The S quantifies 
the rate of improvement or decline in performance over 
time, emphasizing recent observations through the 
exponential decay weighting function. On the other hand, 
the AI measures the variability in a strategy’s dynamic 
adjustments to opponents’ evolving tactics, offering 
insights into its capacity to adapt over time. The decay 
rate λ is carefully calibrated to strike a balance between 
responsiveness and stability, ensuring that immediate 
reactions are captured without sacrificing attention to 
longer-term trends.

RESULTS

Performance Summary
This section presents aggregated statistics of strategy 

performance using the core metrics PWR, WRD, and 
OWR.

The analysis begins with match pair metrics, detailing 
performance dynamics between strategies. Table 4a 
presents PWR and WRD statistics, with WRD mean 
showing the directional performance gap (positive for the 

processes (16).
At any given time t, the CUSUM value Ct is calculated 

as the cumulative sum of deviations from the target mean 
μ0, expressed as                , where Xi represents 
the observed value at time i. If Ct exceeds predefined 
thresholds, it signals a potential shift in the process mean.

These thresholds, referred to as the Upper Control Limit 
(UCL) and Lower Control Limit (LCL), are calculated as 
UCL = k + H and LCL = − k − H, where k is the reference 
value (typically set to half the expected shift size), and  H 
determines the chart’s sensitivity. When Ct crosses these 
limits, it indicates a statistically significant deviation from 
the target mean, warranting further investigation (17).

The MA CUSUM builds on the traditional CUSUM 
by incorporating a moving average to smooth the 
cumulative sum, reducing the impact of short-term 
fluctuations. By combining CUSUM’s sensitivity to 
subtle shifts with MA CUSUM’s smoothing capability, 
these methods effectively distinguish meaningful trends 
from random fluctuations, providing comprehensive 
insights into both consistent and evolving dynamics in 
sequential data.

In this research, CUSUM and MA CUSUM were 
applied to analyze the sequential dynamics of win rates 
and win rate disparities of strategies. Xi denotes the 
observed win rate or disparity at round i, while μ0 is the 
overall mean. The UCL and LCL were used to identify 
statistically significant shifts in strategy performance 
across rounds.

MA CUSUM was particularly valuable for smoothing 
variability in high-variance matchups, providing clearer 
insights into long-term trends and adaptability. This 
combined approach allowed for a detailed assessment of 
how strategies maintained or lost performance consistency 
over time, highlighting critical phases of adaptation or 
decline.

DW Metrics. DW Metrics are rooted in the principle of 
Exponential Decay, a mathematical concept used to model 
processes where recent observations are more relevant 
than older ones. The decay function wi = e −λ (t−i) assigns 
exponentially decreasing weights wi to observations, 
where λ is the decay rate constant and t is the current 
time. A higher λ emphasizes recent events, while a 
lower λ incorporates a broader historical perspective. 
This weighting approach is widely applied in time series 
analysis, stochastic modeling, and adaptive systems to 
prioritize timely information (18).

The DW average extends this principle to compute 
a smoothed value for a dynamic variable, emphasizing 
recent data points while gradually attenuating older ones.  

𝐶𝐶𝑡𝑡 = Σ𝑖𝑖=1𝑡𝑡 (𝑋𝑋𝑖𝑖 − 𝜇𝜇0) 

𝐷𝐷𝐷𝐷(𝑋𝑋𝑡𝑡) =
Σ𝑖𝑖=1𝑡𝑡 𝑤𝑤𝑖𝑖𝑋𝑋𝑖𝑖
Σ𝑖𝑖=1𝑡𝑡 𝑤𝑤𝑖𝑖

 

𝑆𝑆 = Σ𝑖𝑖=1𝑡𝑡 𝑤𝑤𝑖𝑖(𝑡𝑡𝑖𝑖 − 𝑡𝑡)(𝑋𝑋𝑖𝑖 − 𝑋𝑋)
Σ𝑖𝑖=1𝑡𝑡 𝑤𝑤𝑖𝑖(𝑡𝑡𝑖𝑖 − 𝑡𝑡)2  

− −
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Table 4a. Detailed Metrics for Strategy Match Pairs
Match Pair PWR Mean PWR Std. WRD Mean WRD Std.

(Const, MRO) (0.11, 99.74) (0.34, 0.5) -99.64 0.75
(Const, RevMirr) (99.77, 0.18) (0.61, 0.62) 99.59 1.22
(Const, React) (0.1, 99.68) (0.21, 0.66) -99.58 0.73
(Seq, Mirr) (99.63, 0.11) (1.17, 0.38) 99.52 1.32
(Seq, RevMirr) (0.15, 99.57) (0.42, 1.17) -99.42 1.34
(Seq, Excl) (0.28, 49.8) (1.06, 4.64) -49.52 5.45
(RevMirr, MRO) (18.2, 63.6) (23.98, 47.95) -45.4 71.93
(React, MRO) (66.19, 33.12) (2.69, 1.4) 33.08 1.41
(Mirr, MRO) (0.41, 33.29) (1.36, 0.93) -32.88 2.09
(React, RevMirr) (21, 39.5) (40.94, 20.47) -18.5 61.4
(Excl, MRO) (40.31, 45.51) (2.34, 3.08) -5.19 4.84
(Mirr, React) (31, 34.5) (46.48, 23.24) -3.5 69.72
(ProbWt, MRO) (31.36, 34.28) (4.23, 3.83) -2.92 7.52
(RevMirr, ProbWt) (32.6, 34.55) (3.73, 4.12) -1.95 6.98
(Seq, ProbWt) (34.43, 32.8) (3.67, 3.08) 1.63 5.83
(React, ProbWt) (34.06, 32.99) (3.08, 3.01) 1.07 5.14
(Rndm, React) (33.75, 32.7) (3.09, 3.53) 1.05 5.76
(Mirr, RevMirr) (33, 34) (23.8, 47.61) -1 71.41
(Mirr, Excl) (33.57, 32.57) (4.27, 4.19) 0.99 8.2
(Excl, RevMirr) (32.72, 33.48) (5.87, 2.02) -0.76 6.34
(Excl, ProbWt) (33.8, 33.22) (2.88, 3.48) 0.58 5.9
(Rndm, ProbWt) (32.85, 33.11) (2.9, 2.94) -0.26 4.97
(Rndm, RevMirr) (33.54, 33.71) (3.12, 5.54) -0.18 7.87
(Rndm, Excl) (33.1, 33.26) (3.04, 4.01) -0.16 6.22
(Const, Mirr) (0.22, 0.1) (1.07, 0.29) 0.12 1.13
(Const, Excl) (49.92, 49.84) (4.09, 4.44) 0.09 8.47
(Rndm, Const) (33.34, 33.42) (3.11, 3.3) -0.08 5.81
(Mirr, ProbWt) (14.54, 14.62) (9.98, 10.1) -0.08 0.54
(Const, ProbWt) (0.19, 0.26) (0.62, 1.07) -0.07 1.28
(Const, Seq) (33.31, 33.37) (0.4, 0.81) -0.06 1.21
(Rndm, Seq) (33.42, 33.36) (3, 3.31) 0.05 5.1
(Seq, React) (0.2, 0.24) (1.02, 0.68) -0.04 1.27
(Excl, React) (33.35, 33.39) (1.76, 6.1) -0.04 7
(Seq, MRO) (32.9, 32.86) (1.44, 1.01) 0.03 1.29
(Rndm, Mirr) (33.01, 33.04) (3.46, 3.67) -0.02 6.26
(Rndm, MRO) (33.47, 33.46) (2.81, 2.95) 0.02 5.06
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like RevMirr vs. MRO points to inconsistent performance, 
raising questions about what causes these fluctuations. 
These findings highlight the diverse dynamics between 
strategies and suggest areas for deeper analysis in future 
sections.

Aggregated strategy metrics offer a broader 
perspective on performance trends across all match 
pairs. Table 4b and Figure 1b summarize overall strategy 
effectiveness, smoothing out pair-specific variations to 
reveal comprehensive strengths and weaknesses.

first strategy, negative for the second). Figure 1a visualizes 
absolute WRD mean and variability, emphasizing the 
magnitude of differences. WRD variability reflects 
natural fluctuations, derived from non-absolute values for 
consistency.

Table 4a and Figure 1a reveal interesting patterns in 
strategy matchups. Some pairs, like Seq vs. Mirr, show 
one strategy clearly outperforming the other, while 
others, such as Excl vs. ProbWt, are more evenly matched, 
suggesting closer competition. High variability in pairs 

Figure 1a. Heatmap of Absolute WRD Mean and Variability Across Match Pairs.
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The next section focuses on stability and adaptability 
evaluation by excluding fixed strategies like Const 
and Seq, which offer limited insights into variability. 
The Random (Rndm) strategy is retained as a baseline 
reference, enabling a clearer comparison with dynamic 
strategies in staged evolution analysis.

Temporal Analysis
This section examines the evolution of match pairs and 

individual strategies across Early, Middle, and Late phases. 
Observations are based on visualized trends, including 
MA, CUSUM, and MA CUSUM plots for PWR, WRD 

Table 4b and Figure 1b reveal clear differences in 
overall strategy performance. MRO leads with the highest 
mean OWR (46.98%) but shows notable variability 
(6.09), indicating inconsistent dominance. React follows 
with a high mean OWR (40.22%) but greater variability 
(6.35), while Excl balances strength (38.21%) with 
stability (0.97). Strategies like Mirr and ProbWt show 
lower OWRs, reflecting weaker effectiveness. Higher 
variability in strategies such as RevMirr (7.62) and Mirr 
(7.03) highlights challenges in maintaining consistent 
performance, raising questions about trade-offs between 
adaptability and stability for further analysis. 

Figure 1b. Comparison of OWR Mean with Std. by Strategy.

Table 4b. Overall Strategy Effectiveness Summary
Strategy OWR Mean OWR Max OWR Min OWR Std. OWR Median
MRO 46.98 53.57 37.16 6.09 51.11
React 40.22 55.94 31.09 6.35 39.38
Excl 38.21 41.11 33.93 0.97 38.34
RevMirr 36.4 50.94 23.98 7.62 34.58
Rndm 33.31 36.77 28.75 1.05 33.36
Seq 29.29 32.5 27.65 0.64 29.3
Const 27.13 29.75 25.31 0.59 27.12
ProbWt 26.61 31.03 21.94 1.63 26.73
Mirr 18.22 33.75 7.69 7.03 17
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In React vs. MRO, React quickly takes the lead in 
the early phase, with its Moving Average PWR rising 
above 60%, while MRO stays around 30%. The CUSUM 
trends show that both React and MRO start below the 
LCL, showing weak performance early on. As the rounds 
progress, both steadily improve, crossing the LCL around 
the middle phase and moving closer to their baselines. By 
the late phase, React holds a strong lead, shown by stable 
WRD trends in its favor. React shows greater short-term 
variability (MASI = 3.30) compared to MRO (MASI = 
1.60). Over the long term, React’s fluctuations are higher 
(MASI = 7.89) than MRO’s (MASI = 4.00).

In RevMirr vs. ProbWt, ProbWt dominates early, 
with its Moving Average PWR peaking near 55% while 
RevMirr trails at 30%. Disparity CUSUM dips below 

and OWR. Summarized insights are presented in tables, 
while selected examples provide a deeper, illustrative 
analysis.

The evolution of match pairs is summarized in 
Tables 5a, 5b, and 5c, grouped by disparity categories: 
High (H), Balanced (B), and Low (L). These categories 
were derived from the WRD data presented in Table 4a. 
These tables, based on visualized data analysis, provide 
a comprehensive overview of performance trends and 
stability dynamics across the three phases. 

To link the aggregated insights to their visual 
foundations, three representative match pairs - (React, 
MRO), (RevMirr, ProbWt), and (Rndm, Excl) - are selected 
for detailed analysis. Figures 2a, 2b, and 2c present their 
respective plots, showcasing specific trends and behaviors

Table 5b. Phase Evolution of Match Pairs with Balanced Disparity
Match Pair Early Phase Middle Phase Late Phase

(Excl, MRO) MRO leads with fluctuations 
(0.89, 1.32)

MRO holds steady; recovers 
(0.24, 0.48)

Converge with MRO fluctuating lead 
(0.24, 0.37)

(Mirr, React) React leads with fluctuations 
(8.1, 4.05)

React holds lead; Mirr rebounds 
late (7.73, 3.87)

Converge with early Mirr edge, 
fluctuating disparity (6.86, 3.43)

(ProbWt, MRO) MRO leads with high 
fluctuations (3.94, 3.46)

MRO lead dips as ProbWt 
recovers (0.48, 0.28)

Converge with slight ProbWt 
advantage (0.16, 0.16)

(RevMirr, ProbWt)* ProbWt leads with high 
fluctuations (3.85, 3.71)

ProbWt dips as RevMirr 
rebounds (0.49, 0.31)

Converge with slight RevMirr 
advantage (0.15, 0.29)

(React, ProbWt) Fluctuations as React closes 
gap (1.88, 1.54)

React lead narrows; ProbWt 
rebounds (0.3, 0.58)

Converge with slight React advantage 
(0.26, 0.19)

(Rndm, React) React leads with fluctuations 
(1.99, 2.15)

Rndm gains; disparity steadies 
(0.48, 0.36)

Converge with slight Rndm advantage 
(0.24, 0.17)

(Mirr, RevMirr) Competitive with 
fluctuations (6.62, 13.24)

Oscillating dynamics 
(2.35, 4.69)

Converge with RevMirr fluctuating 
lead (1.92, 3.84)

Table 5a. Phase Evolution of Match Pairs with High Disparity
Match Pair Early Phase Middle Phase Late Phase

(RevMirr, MRO) MRO leads with fluctuations 
(7.23, 14.45)

MRO rebounds as RevMirr 
dips (4.85, 9.71)

Converge with MRO edge, fluctuating 
(3.26, 6.52)

(React, MRO) * Both rise sharply; React 
leads (5.16, 2.49)

React stabilizes, MRO 
rebounds (0.07, 0.02)

Converge with React leading solidly 
(0.01, 0.01)

(Mirr, MRO) MRO peaks early 
(1.53, 1.22)

MRO hold leads; Mirr 
rebounds (0.03, 0.04)

Converge with MRO steady lead 
(0.02, 0.01)

(React, RevMirr) RevMirr fluctuates and leads 
(7.42, 3.71)

RevMirr edges React at peak 
(7.02, 3.51)

Converge with RevMirr lead 
(5.45, 2.73)
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Table 5c. Phase Evolution of Match Pairs with Low Disparity
Match Pair Early Phase Middle Phase Late Phase

(Mirr, Excl) Mirr leads with fluctuations 
(1.17, 1.32)

Mirr fluctuates as Excl 
rebounds (0.39, 0.3)

Converge with Excl fluctuating lead 
(0.4, 0.33)

(Excl, RevMirr) Excl gains early advantage 
(6.7, 1.4)

Excl’s lead narrows toward 
balance (0.52, 0.14)

Converge with minor RevMirr 
advantage (0.24, 0.17)

(Excl, ProbWt) Excl lead shrinks 
(3.86, 5.29)

Excl declines as ProbWt 
recovers (0.27, 0.42)

Converge with minor ProbWt 
advantage (0.32, 0.23)

(Rndm, ProbWt) Competitive; Rndm gains 
early edge (1.73, 1.33)

Alternating dominance 
(0.2, 0.67)

Converge with minor Rndm 
advantage (0.19, 0.35)

(Rndm, RevMirr) RevMirr leads with 
fluctuations (3.7, 9.6)

RevMirr declines as Rndm 
gains (0.3, 0.34)

Converge with minor Rndm 
advantage (0.34, 0.15)

(Rndm, Excl) * Excl leads with fluctuations 
(1.64, 3.53)

Fluctuation narrows; minor 
Excl edge (0.54, 0.48)

Converge with fluctuating disparity 
(0.35, 0.24)

(Mirr, ProbWt) ProbWt narrows lead 
(2.35, 2.73)

Balance with minor ProbWt 
advantage (0.91, 0.91)

Converge with diminishing disparity 
(1.53, 1.54)

(Excl, React) React leads with fluctuations 
(0.82, 7.63)

Excl nears balance 
(0.18, 0.83)

Converge as disparity narrows 
(0.11, 0.4)

(Rndm, Mirr) Mirr leads with fluctuations 
(2.83, 2.93)

Rndm gains; Mirr declines 
(0.28, 0.28)

Converge with minor Rndm 
advantage (0.31, 0.24)

(Rndm, MRO) MRO leads with fluctuations 
(1.27, 1.23)

Rndm gains; steady slim 
disparity (0.25, 0.29)

Converge with minor Rndm 
advantage (0.18, 0.31)

Note: * (Selected for detail analysis), Numbers in parentheses indicate MASI values, where lower values signify higher stability 
and reduced variability in the phase.

Figure 2a. Performance Trend for React vs MRO.
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= 1.22) than Excl (MASI = 2.04), with similar long-term 
variability (MASI = 7.54 vs. 7.69). WRD shows moderate 
fluctuation (MASI = 11.66)

The next part of this section shifts focuses from match 
pairs to the evolution of individual strategy performance 
over time. Observations are summarized in Table 6, 
which provides an overview of trends in stability and 
adaptability for each strategy.

To help explain these trends, two strategies - MRO and 
Excl - are chosen as examples for closer analysis. MRO 
shows big swings early on but eventually settles down, 
giving us an idea of how it handles long-term changes. 
Excl, on the other hand, quickly adjusts early and adapts 
well to other strategies. Figures 3a and 3b show how these 
two strategies perform over time.

The MRO strategy exhibits significant long-term 
variability (MASI = 16.81 for CUSUM) and moderate 
short-term fluctuation (MASI = 1.60 for WR). Its win 
rate fluctuates between 37.5% and 52.5% during the early 

the LCL late in this phase but recovers steadily. During 
the middle phase, ProbWt declines as RevMirr rebounds, 
evident in crossing CUSUM trends and a narrowing 
WRD. By the late phase, RevMirr maintains a consistent 
lead as disparity continues to decrease, showcasing its 
stability. ProbWt fluctuates more in the short term (MASI 
= 2.82) compared to RevMirr (MASI = 2.28) and in 
the long term (MASI = 12.77 vs. 10.29). WRD exhibits 
significant fluctuation (MASI = 21.80) across all rounds.

In Rndm vs. Excl, Excl starts strong with its Moving 
Average PWR above 40%, while Rndm lags at around 
30%. In the early phase, Excl’s lead drops quickly, with 
its CUSUM falling from the UCL to far below the LCL 
before recovering. In the middle phase, Excl holds a slight 
lead as its CUSUM peaks and then drops, while Rndm 
catches up, narrowing the gap. In the late phase, they take 
turns leading, eventually converging as disparity levels 
out. The match shows back-and-forth dynamics before 
settling. Rndm shows lower short-term variability (MASI 

Figure 2b. Performance Trend for RevMirr vs ProbWt.

Figure 2c. Performance Trend for Rndm vs Excl.
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Figure 3a. Performance Trend for MRO Strategy.

Table 6. Phase Evolution of Strategy
Strategy Early Phase Middle Phase Late Phase
Rndm Declines initially, then rises to 

a peak (0.62)
Gradually declines, at times below 
LCL (0.15)

Converges with fluctuating recovery (0.07)

Mirr Peaks then down with 
fluctuations (1.71)

Declines further, crossing LCL 
multiple times (1)

Converges with fluctuating recovery (0.85)

Excl Peaks early, then down below 
LCL (0.47)

Gradually recovers with 
fluctuations (0.07)

Converges with steady recovery (0.08)

React Rises with fluctuations
(1.17)

Further rises, up UCL before 
declining (1.13)

Converges with declining fluctuations (0.86)

RevMirr Rises with fluctuations
(1.49)

Peaks near UCL, then gradually 
declines (1.39)

Converges with fluctuating recovery (0.63)

ProbWt Initial rise, fluctuating decline 
(0.58)

Gradual decline, crossing below 
LCL (0.21)

Converges with rising trend (0.2)

MRO Initial rise, steady decline 
(1.73)

Below LCL before gradual 
recovery (1.25)

Converges with steady recovery (0.81)

Note: Numbers in parentheses indicate MASI values, where lower values signify higher stability and reduced variability in the 
phase.
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The adaptability dynamics of match pairs are 
summarized in Tables 7a, 7b, and 7c, aligned with the 
categories in Tables 5a, 5b, and 5c. Match pairs in each 
table are ranked by their combined  values, which show 
how reactive the strategies are over the long term. Steeper 
slopes reflect short-term adaptability, showing how 
quickly strategies respond to changes. Together, these 
metrics give a clear picture of how match pairs adjust and 
evolve over time.

To ensure consistent comparison from various 
perspectives, the same three match pairs - (React, 
MRO), (RevMirr, ProbWt), and (Rndm, Excl) - are 
revisited for further analysis. Figures 4a, 4b, and 4c 
provide a detailed visualization of their adaptability 
dynamics, further supporting the analysis.

In the React vs. MRO match (Figure 4a), React 
demonstrates a higher decay-weighted win rate slope of 
0.0490, reflecting its steady and significant improvement 
in performance over the rounds. Its AI of 0.36 confirms 
React’s ability to adjust consistently while responding 
to changes. In contrast, MRO’s slope of 0.0245 and AI 
of 0.18 indicate a more subdued adaptability, stabilizing 
earlier with limited responsiveness to performance shifts. 
The CUSUM trends show React’s sharp progression, 
while MRO levels off, reflecting their distinct adaptability 
styles.

The RevMirr vs. ProbWt match (Figure 4b) highlights 

phase, with the MA WR stabilizing near the mean of 
46.98%. The CUSUM plot shows an initial rise followed 
by a sharp decline after the 100th round, reaching a 
minimum of -62.51, well below the LCL, during the 
middle phase. By the late phase, MRO steadily recovers, 
showing smaller fluctuations and converging toward 
balance. This demonstrates MRO’s adaptability despite 
early volatility.

Excl demonstrates steadier performance, with low 
short-term variability (MASI = 0.28 for WR) and modest 
long-term variability (MASI = 1.54 for CUSUM). Its MA 
WR remains close to the overall mean of 38.21%. Early 
fluctuations subside quickly, stabilizing Excl through the 
middle and late phases. The CUSUM plot shows an early 
decline, bottoming at -6.6, well below the LCL, followed 
by a slow recovery. By the late phase, Excl converges near 
its baseline, reflecting consistent recovery and balance. 
Its low variability highlights a stable but less dynamic 
performance.

Adaptability Insights
This section examines how match pairs and individual 

strategies adapt over time. The AI captures the magnitude 
of performance shifts over time, while the S focuses on 
short-term responsiveness. By combining these metrics 
with visual trends like DW CUSUM, deeper insights 
are gained into how strategies evolve and adapt over 
time.

Figure 3b. Performance Trend for Excl Strategy.
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In the Rndm vs. Excl match (Figure 4c), both strategies 
show comparable slopes of 0.0249 for Rndm and 0.0242 
for Excl, indicating similar rates of short-term adaptability. 
However, their AIs diverge, with Rndm achieving a higher 
AI of 0.41 compared to Excl’s 0.30, suggesting Rndm 
adapts more actively over time. The CUSUM trends 
illustrate Rndm’s consistent improvements, while Excl 
exhibits fluctuations, reflecting its less stable adaptability 
pattern.

contrasting dynamics. RevMirr achieves a slope of 
0.0246, signifying a steady but moderate improvement in 
adaptability. Its AI of 0.41 shows consistent adjustments 
without sharp shifts. ProbWt, with a slope of 0.0224 and 
a higher AI of 0.64, adapts more dynamically over time, 
reflecting greater sensitivity to performance shifts. The 
CUSUM plot reveals that ProbWt takes a more responsive 
path, while RevMirr maintains a balanced and stable 
adjustment over the rounds.

Table 7a. Adaptability Dynamics of Match Pairs with High Disparity
Match Pair AI Slope Observation

(RevMirr, MRO) (2.82, 5.63) (0.0053, 0.0612) MRO adapts late; RevMirr adjusts steadily
(React, RevMirr) (4.2, 2.1) (0.0099, 0.0309) React adapts dynamically; RevMirr stabilizes consistently
(Mirr, MRO) (0.28, 0.02) (-0.0008, 0.0239) Mirr adapts early but weakens; MRO remains steady
(React, MRO) * (0.36, 0.18) (0.049, 0.0245) React adapts dynamically; MRO stabilizes early

Table 7b. Adaptability Dynamics of Match Pairs with Balanced Disparity
Match Pair AI Slope Observation

(Mirr, React) (3.82, 1.91) (0.0269, 0.0224) Mirr adapts actively; React improves steadily
(Mirr, RevMirr) (1.38, 2.77) (0.0235, 0.0248) Mirr adapts actively; RevMirr adjusts consistently
(ProbWt, MRO) (0.81, 0.71) (0.0255, 0.0218) ProbWt adapts smoothly; MRO progresses steadily
(RevMirr, ProbWt) * (0.41, 0.64) (0.0246, 0.0224) RevMirr adapts steadily; ProbWt stabilizes well
(React, ProbWt) (0.37, 0.46) (0.0231, 0.0251) React adapts steadily; ProbWt adapts faster but variably
(Rndm, React) (0.34, 0.34) (0.0234, 0.0246) Both adapt steadily with balanced trends
(Excl, MRO) (0.13, 0.38) (0.0288, 0.0339) MRO adapts faster; Excl stabilizes slower

Table 7c. Adaptability Dynamics of Match Pairs with Low Disparity
Match Pair AI Slope Observation

(Excl, ProbWt) (0.63, 0.44) (0.0216, 0.0256) ProbWt adapts; Excl adjusts smoothly
(Mirr, ProbWt) (0.78, 0.81) (0.0106, 0.0104) Mirr adapts gradually; ProbWt adapts smoothly
(Mirr, Excl) (0.32, 0.55) (0.0232, 0.0253) Mirr adapts steadily; Excl adapts dynamically
(Rndm, RevMirr) (0.28, 0.55) (0.0237, 0.022) Rndm adapts steadily; RevMirr shows dynamic adjustment
(Excl, React) (0.11, 0.64) (0.0241, 0.0221) Excl adapts minimally; React stabilizes with steady adjustments
(Rndm, Mirr) (0.32, 0.22) (0.0249, 0.0233) Rndm adapts steadily; Mirr stabilizes early
(Rndm, Excl) * (0.41, 0.3) (0.0249, 0.0242) Rndm adapts steadily; Excl stabilizes late
(Excl, RevMirr) (0.5, 0.15) (0.0228, 0.0238) Excl adapts actively; RevMirr adjusts minimally
(Rndm, MRO) (0.2, 0.3) (0.0245, 0.0231) Rndm adapts steadily; MRO stabilizes gradually
(Rndm, ProbWt) (0.19, 0.26) (0.0239, 0.0241) Rndm adapts steadily; ProbWt stabilizes moderately

Note: * (Selected for detail analysis).
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Figure 4c. DW Analysis for Rndm vs Excl.

Figure 4b. DW Analysis for RevMirr vs ProbWt.

Figure 4a. DW Analysis for React vs MRO
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To maintain consistency across perspectives, the 
focus now shifts to the individual dynamics of the 
MRO and Excl strategies, previously analyzed within 
match pairs. This analysis delves into their adaptability, 
utilizing DW-WR and DW-CUSUM trends to evaluate 
performance over time. Figures 5a, 5b provide detailed 
visualizations, offering deeper insights into their 
adaptability and long-term performance patterns.

The MRO strategy shows a robust improvement in 
win rates, reflected in a high slope of 0.3567 for its DW-
WR. This upward trajectory indicates a fast stabilization 
phase, supported by a relatively high AI of 0.71 in 
the DW-CUSUM chart, showcasing its ability to 
respond dynamically to changes during the early 
and middle phases. However, the consistent decline 
in CUSUM toward the later rounds suggests some 
challenges in maintaining adaptability over extended 
gameplay.

In contrast, the Excl strategy exhibits a more 
tempered progression, with a moderate DW-WR slope 
of 0.2760. This indicates a steady but less aggressive 
adaptation curve compared to MRO. The DW-
CUSUM reveals minimal shifts, with a notably low AI 
of 0.07, suggesting that Excl prioritizes stability over 
dynamic responsiveness. The flat trajectory in both DW-
WR and CUSUM during later rounds highlights its 
ability to maintain consistent performance without 
significant variability.

The two strategies show different adaptability styles: 
MRO responds quickly to an early edge, while Excl 
follows a steady path, reducing risk and variation. This 
highlights how different strategies affect long-term 
performance in changing situations.

Figure 5a. DW Analysis for MRO Strategy.

These three matches provide a deeper understanding 
of how adaptability dynamics play out across 
different strategies. By analyzing S and AI, the 
evolution and adjustment of strategies are observed 
over both short and long terms, revealing distinctive 
patterns of reactivity and stabilization. 

The next section shifts focus to individual strategy 
adaptability, analyzing performance trends through WR  
S and AIs. Table 8 summarizes how each strategy adjusts 
and stabilizes over time, providing insights beyond match 
pair interactions.

Table 8. Adaptability Dynamics of Strategy
Strategy AI Slope Observation
Rndm 0.1 0.2414 Stable performance with 

minimal adaptability shifts
Mirr 0.5 0.1332 Gradual adaptability with 

moderate variability
Excl 0.07 0.276 Strong adaptability with 

minimal variation
React 0.66 0.2787 High adaptability with 

consistent shifts
RevMirr 0.51 0.2547 Moderately adaptable with 

steady improvements
ProbWt 0.2 0.1967 Adaptation is gradual, 

stabilizing effectively
MRO 0.71 0.3567 Strong adaptability with 

consistent progression
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over time, as shown by declining MASI values across 
phases. Excl, although classified as reactive, showed 
outstanding stability with the lowest MASI values across 
all phases (early: 0.47, middle: 0.07, late: 0.08), making 
it the most reliable performer. Its steadiness resulted in 
closely matched games with minimal disparities against 
other reactive and adaptive strategies. On the other hand, 
ProbWt, while adaptive, struggled because it relied on all 
past moves. This caused it to overreact to older trends 
and respond too slowly to recent changes, reflected in its 
lower AI (0.2). The Rndm strategy, which lacks patterns, 
served as a baseline, with a WR Mean of 33.31% and AI 
of 0.1, offering a point of comparison for evaluating other 
strategies.

This research shows how strategies work in competitive 
situations and highlights why adaptability is so important. 
MRO shines because it can quickly respond to recent 
trends while avoiding overreacting, making it a strong 
performer. However, its struggles against React point to 
a weakness—it needs to combine long-term adaptability 
with quick, short-term reactions. These findings remind 
us that no single strategy is perfect. The best approach 
often depends on the situation, the competition, and how 
well a strategy matches up against its opponent.

The principles of MRO are reflected in real-world 
scenarios where adapting to recent changes is essential. 
For example, the Digital SAT adjusts question difficulty 
based on a student’s answers to previous questions. 

CONCLUSION

This research investigates nine RPS strategies, 
encompassing random, reactive, and adaptive approaches, 
to evaluate their performance, stability, and adaptability 
through simulated matchups over progressively increasing 
rounds. Using statistical tools such as MA, CUSUM 
Control Charts and DW Metrics, these strategies 
were analyzed across early, middle, and late phases of 
gameplay. Key metrics, including WR Mean, MASI, AI, 
and S, were employed to uncover trends in both 
aggregated results and specific match pairs.

The findings reveal clear patterns in how strategies 
perform. MRO stood out as the best performer, with the 
highest WR Mean (46.98%), AI (0.71), and S (0.3567). 
These findings show that MRO stands out for its ability 
to adapt quickly and stay effective over the long 
term, with the shortest ramp-up time of all strategies. 
Match pair analysis revealed that MRO beat other 
adaptive and reactive strategies but struggled against 
React, whose sharp short-term adjustments countered 
MRO’s focus on recent trends. However, MRO has 
trouble staying stable over time. Its MASI CUSUM 
of 16.81 is the second highest among all strategies, 
and its performance in the early phase showed a lot of 
variation before stabilizing later. React’s sharp, 
short-term adjustments worked well against MRO’s 
focus on recent trends. Stability analysis revealed 
that all strategies became more stable 

Figure 5b. DW Analysis for Excl Strategy.
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enhancements could take adaptive strategies like MRO to 
the next level, showing how to “Adapt to Win” in all kinds 
of challenges.
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