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ABSTRACT

Radiation therapy is widely used to treat cancerous cells; however, it is costly and has significant 
side effects if not properly used. During treatment, some organs, such as the liver, may shift slightly due 
to the patient’s respiration, making accurate real-time tracking and contouring essential to minimize 
damage to healthy tissues. Current tracking systems usually include precise real-time positioning and 
contouring of the treatment area, which require costly imaging technologies to run throughout the 
entire therapy session, increasing the overall treatment cost and limiting the availability of advanced 
equipment like MRIs to hospitals. This research studies the application of Pix2Pix, a Conditional 
Generative Adversarial Network (GAN), as an alternative to traditional contouring methods in 
liver cancer radiotherapy. The result shows that a well-trained Pix2Pix can help accurately track 
liver movement during respiration. With AI computing power becoming increasingly affordable, I 
anticipate that GANs like Pix2Pix can be industrialized to make cancer treatment more accessible 
and cost-effective.
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INTRODUCTION
 
Over 50% of cancer patients undergo radiation 

therapy as part of their treatment (1). This method uses 
high-energy radiation to kill cancer cells, with each 
session lasting from 15 to 30 minutes, though the actual 
radiation exposure only occurs for a few minutes. One of 

the main challenges in radiation therapy is to deliver an 
adequate dose to the tumor while minimizing exposure 
to surrounding healthy tissues. This challenge becomes 
more difficult when the target area moves or changes 
shape, such as in the liver or lungs during respiration.

Respiratory motion is a major source of uncertainty in 
radiotherapy for abdominal tumors, leading to deviations 
in dose distribution and potential damage to healthy 
tissues. To address this issue, various techniques have been 
developed in the field of radiotherapy. First, expanding the 
treatment area by increasing the planning margins can 
ensure the moving target is consistently treated. However, 
this approach also increases the risk of damaging 
adjacent healthy tissues, particularly for patients with 
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larger motion ranges of up to 2-3 cm. Second, motion-
management techniques, such as respiratory gating only 
deliver radiation during specific points of the breathing 
cycle, while abdominal compression uses a belt to reduce 
tumor movement (2). Third, fiducial markers which are 
tiny metal markers implanted in the treatment area, 
assist in tracking the tumor movement. Unfortunately, 
this method is incredibly invasive, and the markers may 
migrate away from targets and the implantation itself 
might lead to infections or other side effects (3). Lastly, 
real-time motion synchronization technology tracks the 
motion of the treatment area and guides the radiation 
beam accordingly to maintain real-time precise targeting 
throughout the session (4). 

The real-time motion synchronization technology in 
radiotherapy has the potential to significantly improve 
the accuracy of radiotherapy by reducing treatment 
times and minimizing damage to healthy tissues. This 
technology utilizes imaging methods like CT, MRI, and 
PET, with fast-computing software for real-time tracking 
and contouring of moving treatment areas. However, 
continuously operating such systems is costly, making 
them inaccessible to some patients and hospitals that lack 
imaging machines. To address this issue, the radiotherapy 
field has been actively exploring alternative methods. 
A recent review highlights surface-guided radiation 
therapy (SGRT), which uses non-invasive optical surface 
imaging (OSI) to monitor patient body motion in real-
time (5, 6). When combined with gating technology, 
SGRT is particularly effective for patients with noticeable, 
repetitive body movements, such as during respiration. 
However, this method is subject to interruptions caused by 
respiratory irregularities. Currently, radiation therapy is a 
complex process involving advanced imaging, computing, 
and medical expertise with simulation imaging via 3D CT 
or MRI to map the patient’s anatomy. Oncologists will 
then contour the treatment area to differentiate it from 
healthy organs, followed by planning and implementation 
of the treatment (7).

With the recent clinical adoption of MR-guided linear 
accelerators, a large amount of continuous real-time planar 
MR imaging data has been captured at a rate of 4 frames 
per second during the radiation therapy treatment. This 
allows researchers to investigate the correlation between 
internal organ motions and external skin movements. 
The advanced artificial intelligence will enable us to 
analyze large amounts of data to generate motion models.  
Recently, general adversarial networks (GANs) have been 
developed and tested in medical imaging, showing great 
success, particularly in medical image classification, 

segmentation, and image synthesis including CT 
translation (8-10). Based on these successes, this research 
proposes a novel approach to radiation therapy by replacing 
costly imaging methods like CT, MRI, and PET with more 
accessible technologies such as cameras and ultrasound. 
Using body contours and diaphragm movements as inputs 
for a trained AI model, the goal is to accurately predict 
the position and boundaries of treatment areas, such as 
cancerous livers, allowing for precise targeting of cancer 
cells while minimizing damage to healthy tissue. The 
initial focus will be on liver cancer treatment to minimize 
damage and side effects of radiation therapy.

METHODS

In this article, I won’t recount deeply the specifics 
of the machine learning model;  instead, I will focus on 
how I prepared the inputs and desired outputs for this 
conditional GAN, how I adapted the model, and how I 
measured the success of the model. 

Model of GAN
This research has explored various GANs including 

cycle GANs which are trained on unpaired images and 
conditional GANs which are trained on paired images. A 
comparative analysis between these two types of GANs 
is available in (11). I have found that Pix2Pix, a specific 
implementation of conditional GAN, is effective in the 
prediction of the centers and contours of the treatment 
areas based on simple and relatively affordable input data. 

Data Processing
The preparation of datasets to train and test our 

Pix2Pix model is outlined in  Figure 1 where each image 
is labeled with a corresponding letter.

We first extracted the images (frames) from video clips 
generated by real-time motion tracking and contouring 
systems in the radiotherapy practice of various cancerous 
livers. Our research yielded approximately 250 images 
per minute from the video clips with most videos yielding 
between 2000-4000 images, and the lowest producing 
around 1000 images. This process resulted in a few 
thousand images like the image shown in Figure 1A 
which depicts a 2-dimensional image of the thorax and 
abdominal area with the contour of the cancerous area 
for radiotherapy treatment. Figure 1B was derived from 
Figure 1A, representing the body contour and diaphragm, 
which serves as the “input” to the conditional GAN model 
Pix2Pix, and Figure 1C was also extracted from Figure 1A, 
illustrating the body contour alongside the treatment area 
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before we moved it the calculations to a local GPU (13). In 
a GAN model, the loss function is a critical component. 
In the original Pix2Pix implementation, the generator loss 
is a weighted combination of the sigmoid cross-entropy 
loss of the model-predicted images compared to an array 
of ones,  and the L1 Loss which is a mean absolute error 
(MAE) between the generated images and the target 
images (13). The discriminator loss is calculated as the 
sum of real loss, a sigmoid cross-entropy loss between the 
real photos and an array of ones, and generated loss which 
is the sigmoid cross-entropy loss of the generated images 
and an array of zeros, representing the fake images. 

contour.  From Figure 1C, I can determine the center of the 
treatment area, which is crucial for accurately targeting 
the radiation beam and the contour of the treatment area 
for guiding the radiation beam. However, using Figure 1C 
as the desired “target” or “output” of Pix2Pix causes a 
convergence issue. To address this issue, I found a filled 
image (Figure 1D) can greatly improve the convergence 
speed and accuracy of Pix2Pix training.  Hence, Figure 
1D was used as the target to train the Pix2Pix model.  

Ultimately the training dataset and test dataset were 
generated, which consisted of a few thousand images 
with each containing a pair of a target image and an input 
image as illustrated in Figure 2.

Figure 3 demonstrates how the treatment areas, whether 
the entire liver or a portion of it, can shift, with green grid 
lines overlaid on the original images to visually illustrate 
the motion of the treatment area in each patient case. 

Model Implementation and Loss Function 
A few implementations of the Pix2Pix model as 

detailed in Isola’s paper are available on the internet, 
utilizing either the TensorFlow framework or the PyTorch 
framework (12). I started the exploration with the Colab 
framework due to its free, though,  limited TPU computing 
power. This led us to explore and adapt the Pix2Pix 
implementation published on the TensorFlow website 

Figure 1. Extracting datasets for Pix2Pix training and testing, and A, B, C, and D images are of size 256 × 256 pixels.

Figure 2. A representative image in the dataset consists of a 
target image (Left) and an input image (Right).

Figure 3. Sample positions and shapes of cancerous livers or parts of livers of different patients.
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Measures of the Model Result 
Various metrics have been developed to assess the 

accuracy of generated images in comparison to target 
images. I found that most of the regular image similarity 
measures as reported by Wang et al are not suited to our 
purpose (8).  Our primary focus is on accurately identifying 
the center of the treatment area, which determines where 
the radiation beam should target, and the contour of the 
treatment area, which differentiates the cancerous cells 
from the healthy tissue. 

In this research, I use these two measures: 
DC:  the dice coefficient, defined as (14) 

Where T is the set of pixels of the treatment area in the 
target image, while P is the set of pixels of the predicted 
treatment area in the model-generated image, I also use 2 
variations of DC to achieve better control. 

 

The value of 1.0 - DC1 roughly tells us how much the 
target treatment area is missed, and 1.0 - DC2 roughly 
tells us how much of the predicted treatment area is the 
healthy body tissue. 

CD: The Center Distance between the center of 
the treatment area in the target image and the center of 
predicted treatment is in the model-generated image. The 
center of an area is defined as the simple average of the 
coordinates of the pixels in the area.  

This measure roughly tells us how far away the 
predicted target for the radiation beam is from the desired 
target point in the treatment area.

 
Model Training and the Exit Point 

The original implementation does not implement the 
exit mechanism during the model training, and a notorious 
issue with GANs is that the training process does not 
always converge to the optimal state and can sometimes 
deviate, requiring manual checks of the training log to 
identify the checkpoints where the model is in the relatively 
best-trained state.  To address this, I implemented an exit 
mechanism using the DC and CD measures.  First, the 
thresholds to exit for these measures are defined for each 
training. For each training session, specific thresholds are 
set for these metrics. Training continues until a certain 
epoch limit is reached, typically 200,000 epochs, beyond 
which further training would be unproductive. During 
training, at every 100 epochs or 200 epochs, the trained 

model was tested with 12 sample points from the test 
dataset, with each sample as a pair of the target image 
and the input image. With the input, target, and model-
predicted images, I can calculate the DC and CD for each 
sample point, and calculate the average DC and CD. I then 
check if they beat the threshold that I have defined for the 
model to exit.  

 Usually, the thresholds for DC, DC1, and DC2 for each 
sample point were set at 0.9 or 90%, and 91% or higher for 
the threshold for the average DC of all sample points. The 
thresholds for CD are mostly 2-3 pixels for each sample 
point with average CD across all sample points needing 
to be 0.5 pixels lower for the model training, the testing 
of the trained model was demonstrated in Figure 4, which 
shows a single input comprising the input image, the 
target image, and the conditional GAN-generated image. 
The fourth image in the block is the “merged” version of 
the target image and the model-predicted image. In this 
merged image, the yellow area represents the "T∩P” 
area, the red area represents missed cancerous cells, and 
the green area highlights the healthy cells mistakenly 
identified as cancerous by the model.  The numbers on top 
of Figure 4  represent DC, DC1, DC2, and CD respectively. 

Testing of the Trained Model 
After the model exits from training, it is then run 

against the test dataset, with DC and CD calculated for 
each test data point. The testing result can be demonstrated 
in Figure 7 to Figure 8 at the end of this paper, with each 
figure representing a different data set. As a comparison 
reference for CD, the dimension of the treatment area of 
this patient is about 80 pixels. The result will be discussed 
in detail in the following section. 

RESULTS AND DISCUSSION
  

We have collected more than 100 video clips from 
anonymous patients with various abdominal cancers, 
among which around 50 were cancerous liver cases. I 
developed the image extraction and dataset construction 

DC = 
2 | T ∩ P |
| T | + | P |

DC1 = DC2 = ,| T ∩ P |
| T | 

| T ∩ P |
| P | 

Figure 4. Intra-training checkpoint testing of the trained 
model in search of the exit point for a well-trained model.
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process and generated the training and testing dataset for 
each video clip. However, given the limitations of the GPU 
resource I had for this research, I decided to take a few 
typical cases in the current phase: I divide these 50 sets 
of data for cancerous liver into 7 categories based on the 
shape of the treatment area as demonstrated by Figure 3. 

 In this phase of the research, our exploration, training, 
and fine-tuning of the Pix2Pix model were performed on 
one or two datasets from each of these categories. The 
result was presented in 3 formats with statistics of the 
result shown in Table 1, distribution charts of DC and CD 
were shown in Figure 5-6 showing the change in accuracy 

Figure 5. Distribution charts of DC and CD for datasets s003, s004, and s015, x-axis depicts the test result of the xth 
test image, y-axis depicts the correlating DC or CD value.
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cases in the corresponding dataset. Similar terms were 
also given for DC1, DC2, and CD. The Avg Size value is 
computed as the mean of the square root of the number 
of pixels in the treatment area in each test case of the 
corresponding dataset, and this Avg Size value can be 
compared with the Avg CD value to decide how accurate 

of the generated results in the form of DC and CD in 
relation to the number of epochs, and sample test cases as 
shown in Figure 7-8 demonstrate the actual accuracy of 
the generated model.

In Table 1, the Avg DC and StdDev DC are the mean 
and standard deviation of the Dice Coefficient for all test 

Figure 6. Distribution charts of DC and CD for datasets s026, s036, and s048, x-axis depicts the test result of 
the xth test image, y-axis depicts the correlating DC or CD value.
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Figure 7. Sample testing result of the trained model on 
datasets s003, s004, s015, s026, s036, and s048.

Figure 8. Sample testing result of the trained model 
on datasets s004, s015, s026, and s036 that are shifted 
horizontally or vertically to simulate the different locations 
a patient may lay on a machine.

Table 1. Dice Efficiency, Center Distance, and Image Size

Dataset Avg 
DC

StdDev 
DC

Avg 
DC1

StdDev 
DC1

Avg 
DC2

StdDev 
DC2

Avg 
CD

StdDev 
CD

Avg 
Size

Max 
Move

s003 94% 0.8% 91% 2.5% 98% 1.8% 2.3 0.8 84.3 22.2
s004 96% 0.7% 97% 0.9% 95% 0.9% 1.1 0.4 85.8 10.0
s015 97% 0.7% 95% 1.1% 99% 0.7% 1.2 0.5 82.8 25.2
s026 95% 1.0% 96% 2.0% 95% 1.3% 1.6 0.7 76.9 20.4
s036 92% 2.0% 91% 2.5% 93% 3.9% 1.6 1.0 43.0 33.6
s048 89% 1.3% 84% 1.4% 94% 1.8% 4.5 1.1 68.2 39.2

-
ss003 95% 1.1% 93% 2.3% 96% 2.0% 2.6 0.9 82.8
ss015 95% 0.8% 95% 1.6% 95% 1.0% 1.3 1.0 81.5
ss026 94% 1.4% 95% 2.2% 93% 2.9% 1.7 0.9 76.0
ss036 89% 6.6% 88% 4.8% 91% 9.9% 1.9 2.3 43.1
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CONCLUSION
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