
June 2024    Vol. 2 No 2    American Journal of Student Research    www.ajosr.org 1

American Journal of Student Research

Smoothened Inhibitors to Block the Sonic 
Hedgehog Signaling for Cancer Treatment

Dwight Qing Teng1 and Xixian Li2,#

1Claremont High School, 1601 North Indian Hill Blvd, Claremont, CA 91711, USA;
2Oakcrest School, 1619 Crowell Rd, Vienna, VA 22182, USA

ABSTRACT

The Sonic Hedgehog (sHH) pathway is vital for embryonic development and adult tissue maintenance. 
Aberrant sHH pathway activation is implicated in tumors like basal cell carcinoma (BCC), medulloblastoma, 
and pancreatic cancer, prompting significant efforts to develop pathway inhibitors. Smoothened (SMO), a 
pivotal protein in the sHH signaling pathway, is a key drug target for the treatment of tumors. To date, many 
chemical compounds have been developed to target SMO, including vismodegib and sonidegib which have 
been approved by FDA to treat advanced BCC with aberrant sHH pathway activation. In this article, we  
review recent advances in drug development by targeting SMO to inhibit the sHH signaling pathway for 
tumor treatment.
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INTRODUCTION

The sHH signaling pathway plays essential roles in 
embryonic development and adult organ homeostasis 
[1, 2]. For instance, the sHH signaling initiated by sHH 
ligand is implicated in correct formation of the limbs, 
somites and neural tube in early mammal embryogenesis 
[2, 3]. In the absence of sHH ligand, its receptor Patched 
(PTCH), a 12-span transmembrane protein, functionally 
inhibits SMO and prevents SMO from accumulating to 

primary cilia, leading to phosphorylation of the Full-
length GLI proteins [4] (Figure 1). The phosphorylated 
GLI is then subjected to proteolytic process, resulting 
in repressor GLI (GLIR) generation which suppresses 
the sHH target gene transcription [4]. In contrast, in the 
presence of sHH, the ligand binds to its receptor PTCH 
and relieves the PTCH inhibition to SMO. The activated 
SMO then translocates into primary cilia and dissociates 
GLI from a suppressive Suppressor of Fused (SUFU), 
leading to the activation of downstream GLI [5] (Figure 
1). The activated GLI subsequently translocates into the 
nucleus to regulate the expression of target genes involved 
in cell proliferation, survival, and differentiation [1].

Aberrant activation of the sHH pathway has been 
implicated in various types of cancer including BCC, 
medulloblastoma, and pancreatic cancer. Therefore, 
significant efforts have been made to develop the sHH 
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signaling pathway inhibitors for cancer treatment. Among 
all the targets in the sHH pathway for drug development, 
SMO has attracted significant attention as mutations or 
overexpression of SMO promote tumor growth, invasion, 
and metastasis [1]. To date, FDA has approved two SMO 
inhibition-based drugs, vismodegib and sonidegib, to 
treat BCC, a type of skin cancer where the sHH signaling  
pathway is aberrantly activated. In this article, we will 
review recent advances in drug development by targeting 
SMO to inhibit the sHH signaling pathway for cancer 
treatment. 

PTCH/SMO AND CANCER

PTCH/SMO in BCC
BCC, accounting for 90% of all skin cancer, is primarily 

resulted from exposure to ultraviolet (UV) of sunlight 
or ionizing radiation which leads to DNA damages [6]. 
About 85- 90% of BCCs show a loss of Patched1 (PTCH1) 
function by inactivating PTCH1 mutations or constitutive 
activation of SMO through SMO mutations in the sHH 
signaling [7]. PTCH1, one of the two isoforms of the PTCH 
gene, has been well studied as a key component in the 
sHH signaling pathway. while PTCH2, the other PTCH 
isoform, is less well understood and is believed to partially 

overlap with PTCH1 [8]. PTCH2 may compensate for the 
loss of PTCH1 in certain contexts and may have distinct 
or redundant roles depending on the tissue type [8].

PTCH functionally inhibits SMO activation without 
sHH ligand, and inactivation of PTCH would release 
SMO for the sHH signaling activation, and PTCH1 
inactivating mutations have been identified in 70–90% 
of BCCs [9, 10]. Numerous studies have shown that 
sporadic BCC carries inactivating point mutations and 
loss of heterozygosity of PTCH1 allele. For instance, 
about half of PTCH1 somatic point mutations contain 
the “UV-signature” C-T and CC-TT changes [10, 11]. In 
addition, loss of heterozygosity of PTCH1 allele (located 
at chromosome 9q22.3) is often identified in BCC [12, 
13]. Danaee et al analyzed loss of heterozygosity of the 
PTCH gene in 276 keratinocyte tumors and found a high 
prevalence (75.5%) of any 9q22.3 loss of heterozygosity of 
the PTCH in BCC with PTCH gene lost in 60% of BCC 
[13]. SMO is another important gene implicated in BCC, 
and approximately 10-20% of BCC harboring activation 
mutation in SMO gene. For instance, Bonilla conducted 
genomic analysis of 293 BCC biopsies from 263 sporadic 
BCC patients and 30 patients with Gorlin syndrome (a 
syndrome predisposing individuals to develop BCC) 
[9]. Their study identified 20% of BCC containing SMO 

Figure 1. Sonic Hedgehog signaling (sHH) pathway in the absence (A) and presence (B) of Shh ligands. In A, PTCH inhibits 
SMO, leading to GLI1 sequestration in the cytoplasm by SuFu. In B, sHH ligand binds to PTCH, releasing PTCH suppression 
to SMO, resulting in the nuclear translocation of GLI which activate target genes the sHH signaling.
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mutations. In another separate study, Reifenberger et 
al reported approximately 10% SMO mutations were 
identified from 42 BCC tumors [14]. In summary, both 
mutations and loss of heterozygosity of PTCH and SMO 
are implicated in BCC.

PTCH/SMO in Medulloblastomas 
Medulloblastoma is a type of brain tumor accounting 

for approximately 20% of childhood brain cancers and 
10% of all childhood cancer deaths [15, 16]. One subtype 
of medulloblastoma, known as Sonic Hedgehog-activated 
medulloblastoma (sHH-Activated MB), comprises 
approximately 25% to 30% of medulloblastoma [17]. 
Dysregulation of PTCH and SMO plays important roles 
in the pathogenesis of the sHH-Activated MB. Yang et 
al reported that granule neuron precursors and stem cells 
are the cell types for the origin of medulloblastoma, and 
deletion of PTCH to activate sHH signaling in stem cells 
leads to medulloblastoma in mice by 3 months of age 
[18]. Raffel et al examined 24 sporadic medulloblastomas 
and their data showed loss of heterozygosity of PTCH 
in 5 of 24 tumors. Among these cases, a mutation of the 
remaining allele was identified in three cases in PTCH 
gene. suggesting that inactivation of PTCH function 
is implicated in a SHH-Activated Medulloblastomas 
[19]. In addition, Xie reported that 2 of 14 sporadic 
medulloblastomas bear somatic nonsense mutations (Stop 
codon introduction) in one copy of the PTCH gene and 
also deletion of the other alle of PTCH gene [20].

Additional to PTCH gene mutations or lose of its 
heterogeneity in MB, activating mutations in SMO are 
collectively found in approximately 10-15% of sporadic 
medulloblastomas [21]. The importance of SMO mutations 
in medulloblastomas development has been evidenced by 
medulloblastomas formation in 94% of the transgenic 
mouse model in which homozygous transgenic mice 
contain activating mutations in both alleles of SMO [22].  

PTCH/SMO in other types of cancer 
Addition to BCC and the sHH-Activated MB, PTCH/

SMO mutations and loss of heterozygosity also have 
significant effects on the development of other types of 
cancer i.e. liver cancer, pancreatic cancer and breast cancer. 
Sicklick et al demonstrated that SMO overexpression is 
correlated with liver tumor size, and identified a novel 
SMOK575M mutation which may play a critical role in liver 
cancer development [23]. The knockdown of SMO could 
inhibit self-renewal, epithelial-mesenchymal transition, 
pulmonary metastasis, tumorigenesis of pancreas cancer 
stem cells, suggesting that inhibition of SMO could be 

a therapeutic strategy to treat pancreatic cancer [24]. 
Moreover, abnormal expression of sHH ligand without 
genomic mutations was believed to sufficiently trigger the 
initiation of pancreatic cancer [25]. 

Furthermore, mutations in PTCH and SMO have 
been reported in breast cancer as well. Wang and college 
showed that PTCH1 mutations, especially mutations in 
exons 22 and 23, are associated with early recurrence 
of breast cancer patients and could serve as a powerful 
predictor for recurrence of breast cancer [26]. Moraes et 
al demonstrated that expression of activated human SMO 
mutation in transgenic mice leads to dysplasia of the 
mammary ducts [27].

In summary, aberrant activation of the sHH signaling 
pathway, particularly by PTCH / SMO mutations or loss 
of heterozygosity of PTCH1 gene allele plays key roles 
in pathogenesis of multiple types of cancer. Therefore, 
significant efforts have been made to develop drugs to 
inhibit sHH signaling, especially SMO inhibitors, for the 
treatment of cancers. 

TARGETING SMO FOR CANCER TREATMENT

Dysregulation of the sHH pathway, often due 
to overexpression of sHH ligand, PTCH and SMO 
mutations, is implicated in various cancers. As it positions 
at the downstream of sHH ligand and PTCH for the sHH 
signaling regulation, SMO is an attractive target for drug 
development. Thus, significant endeavors have been made 
in the past to develop SMO inhibitors to interfere the 
aberrant activation of the sHH pathway in malignancies 
including two of SMO inhibitors, Vismodegib (Erivedge) 
and Sonidegib (Odomzo) approved by FDA to treat 
advanced basal cell carcinoma (Figure 2).

Cyclopamine
Cyclopamine is the first reported SMO inhibitor, 

which can be dated back to the 1950s, when researchers 
investigated the causes of lamb cyclopia, a rare birth 
defect characterized by the development of a single eye 
in the center of the lamb face. They found that lambs 
born to ewes that had grazed on the corn lily plant 
(Veratrum californicum) during pregnancy exhibited this 
abnormality. Further investigation led to the identification 
of chemical compound cyclopamine responsible for the 
lamb cyclopia induction [28]. In 1998, Beachy group and 
Incardona et al. discovered that cyclopamine effectively 
inhibits the Shh signaling pathway [29, 30]. Subsequently, 
Beachy research group reported that cyclopamine 
specifically targets SMO protein for the sHH signaling 
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cyclopamine. Chen et al demonstrated that KAAD-
Cyclopamine exhibits greater potency in inhibiting the 
sHH signaling pathway compared to natural cyclopamine. 
This enhanced potency can potentially lead to improved 
therapeutic outcomes with lower doses to minimizeits 
potential side effects [32]. In addition, Chen et al also 
showed that KAAD-Cyclopamine offers greater selectivity 
in targeting SMO in comparison to cyclopamine leading 
to reduced off-target effects and improved safety profiles 
[32]. These advantages collectively position KAAD-
cyclopamine as a promising candidate for further 
development as a therapeutic agent for diseases associated 
with dysregulated sHH pathway. 

IPI-926
IPI-926, also known as IPI-269609, is another 

synthetic derivative of cyclopamine that has been 
developed as a potential anticancer agent targeting SMO.  
In comparison to cyclopamine, it exhibits improved 
pharmacokinetic properties and enhanced potency. For 

inhibition [31, 32]. Since its discovery, cyclopamine has 
become a valuable tool in scientific research, and a potential 
therapeutic agent for various cancers and diseases linked 
to abnormal Shh signaling. Intensive preclinical studies 
have also demonstrated that cyclopamine effectively 
inhibits growth of tumors, including human glioma, 
melanoma, colon, pancreatic, prostate cancers, small cell 
lung cancer, and medulloblastoma [33-37].

Nevertheless, the therapeutic potential of cyclopamine 
as an sHH signaling inhibitor for human cancers was 
limited by its side effects, low solubility in normal saline, 
and other physiological solutions as well as instability 
under acidic conditions [38, 39]. To overcome these issues, 
several cyclopamine derivatives that display more-drug 
like properties have been developed, including KAAD-
cyclopamine and IPI-926 [32, 40] , 11]. 

KAAD-Cyclopamine
Among the cyclopamine derivatives, KAAD-

Cyclopamine displays several advantages over 

Figure 2. Chemical Structures of SMO inhibitors.
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instance, IPI-926 displays ~30-fold greater potency  
than cyclopamine at inhibiting Gli-luciferase reporter 
activity in both murine and human cell lines [41]. 
Additionally, IPI-926 was shown to exhibit a significant 
increase in plasma half-life due to low clearance and 
high tissue distribution, and oral administration of IPI-
926 results in downmodulation of the sHh pathway in 
primary chondrosarcoma xenografts [40, 42]. Pancreatic  
cancer is among the most lethal human cancers, in part 
because it is insensitive to many chemotherapeutic 
drugs. In studying a mouse model of pancreatic cancer, 
co-administration of IPI-926 significantly increases the 
delivery and efficacy of gemcitabine in the mice [43]. 
Due to its excellent preclinical properties, IPI-926 was 
examined in a clinical phase I trial to treat patients with 
Patients with Advanced and/or Metastatic Solid Tumor 
Malignancies (NCT01130142) [44]. 

Non-cyclopamine-derivatives-based SMO inhibitors
PF-04449913, LY2940680 (Taladegib) and 0025A, 

three SMO inhibitors structurally completely different 
from cyclopamine and its derivatives, have been 
reported as well. In one study, Munchhof et al. showed 
remarkable potency and beneficial pharmacological 
characteristics of PF-04449913[45]. Further study 
demonstrated that PF-04449913 effectively attenuates the 
leukemia-initiation potential, and enhances acute myeloid 
leukemia therapy by sensitizing dormant leukemia stem 
cells to chemotherapy and overcoming resistance in 
the bone marrow microenvironment [46]. Early Phase 
I trials of PF-04449913 have confirmed its favorable 
safety, tolerability, and potential efficacy in various 
hematologic malignancies, including acute myeloid 
leukemia, myelodysplastic syndrome, myelofibrosis, 
chronic myelomonocytic leukemia, and advanced solid 
tumors (NCT [47-49]. Current Phase II trials of PF-
04449913 are underway to assess its effectiveness in 
acute myeloid leukemia, high-risk myelodysplastic 
syndrome (NCT01546038), myelofibrosis in patients 
previously treated with ruxolitinib (NCT02226172), and 
refractory/relapsed myelodysplastic syndrome or chronic 
myelomonocytic leukemia (NCT01842646).

LY2940680 (Taladegib), another non-cyclopamine 
related SMO inhibitor was shown to target the extracellular 
end of SMO’s transmembrane-helix bundle for Hedgehog 
signaling inhibition [50, 51]. Phase I and Phase II trials 
of LY2940680 have been conducted for advanced solid 
tumors and esophageal cancers. In a phase I clinical 
trial, LY2940680 exhibited favorable pharmacokinetic 
profiles, and it can inhibit both the wild-type SMO and the 

mutant SMOD473H (NCT02530437) [52] [53]. In an ongoing 
phase II clinical trial, LY2940680 efficacy and safety are 
being evaluated specifically in patients with solid tumors 
characterized by PTCH1 loss-of-function mutations 
(NCT05199584). However, no results from this trial have 
been reported. 

Recently, Fan et al reported a novel potent SMO 
antagonist 0025A, which may represent a new therapy for 
refractory cancers [54]. 0025A can bind to both wild-type 
SMO or mutant SMOD473H, and reduce the accumulation 
of SMO on primary cilia and the expression of Gli 
upon the sHH ligand stimulation. In addition, the Shh 
signaling is closely related to regulation of hair follicle 
morphogenesis, and the inhibitory effect of 0025A on hair 
follicle morphogenesis and hair growth were examined 
[55, 56]. . The studies showed that 0025A suppressed Shh 
signaling-mediated-hair growth in C57BL/6 mice, which 
warrants further investigation of 0025A compound in the 
treatment of human cancer. 

Vismodegib (GDC‑0449) and Sonidegib (LDE‑225) 
Vismodegib (GDC-0449) is the first SMO inhibitor 

drug approved by the FDA for the treatment of adults 
with BCC. Developed by Genentech, Inc., this drug 
emerged from extensive clinical trials, including a 
phase I trial involving 68 patients. Throughout this trial, 
varying dosages of Vismodegib were administered, with  
promising outcomes across different patient groups. In 
subsequent phase II and III clinical trials, Vismodegib 
exhibited notable efficacy in patients with advanced BCC. 
Key assessments encompassed adverse effects, tumor 
responses, pharmacokinetics, and the down-regulation of 
GLI expression, and the results underscored the potential 
of Vismodegib as a viable anti-tumor therapy, particularly 
in advanced BCC and medulloblastoma cases. Eventually 
Vismodegib gained approval from FDA in January 
2012 and from the European Commission in July 2013 
to specifically treat adult patients with symptomatic 
metastatic BCC or locally advanced BCC.

Sonidegib (LDE-225) is the second SMO antagonist 
drug approved by the FDA. Sonidegib was discovered 
by Pan and colleagues in an in-vitro high-throughput 
screen, and it interacts with SMO in the drug-binding 
pocket to  prevent downstream activation of sHh 
signaling pathway [57, 58]. In the clinical Phase I trial, 
Sonidegib was assessed for its safety, pharmacokinetics, 
and preliminary efficacy in patients with advanced BCC. 
Results confirmed Sonidegib’s favorable safety profile, 
good pharmacokinetics and promising preliminary 
efficacy [59]. Subsequent clinical trials confirmed 
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FUTURE PERSPECTIVES AND CONCLUSION  

SMO inhibitor drugs hold promise in expanding 
treatment options for various cancers including BCC. 
Continued research efforts aim to elucidate the potential of 
SMO inhibitors in targeting other malignancies, including 
SHH-Activated Medulloblastomas and other solid tumors 
with aberrant sHH signaling. As our understanding of 
the intricate interplay between the sHh signaling and 
tumorigenesis deepens, novel strategies for refining 
SMO inhibitor therapies are likely to emerge, potentially 
leading to improved patient outcomes and survival rates 
in a broader spectrum of cancer types. 

In summary, SMO has emerged as a compelling target 
for drug development due to its central role in the sHH 
signaling pathway. Continued advancements in SMO-
targeted therapies hold promise for improving treatment 
outcomes for patients with SMO-dependent malignancies 
and related disorders. While challenges such as drug 
resistance and off-target effects persist, advancements in 
drug development, patient stratification, and combination 
therapy strategies offer hope for further optimizing SMO 
inhibitor treatments and extending their benefits to a 
wider patient population.
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