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ABSTRACT

Roadway distress detection is essential for ensuring a safe and comfortable driving environment. 
However, given the irregular shape, small area size, and occasionally very large number, of the road 
distress objects, it is often laborious to label the distress instances during the training process under the 
fully supervised algorithm.  To address this issue, the study strives to apply semi-supervised learning for 
distress detection that claims to reduce the cost associated with the labeling process, while maintaining or 
even improving the learning accuracy in some situations. The research features three distinct backbones of 
Mask R-CNN models, Unmanned Aerial System imagery of two resolutions, three levels of pseudo-labeled 
data, eleven threshold values and two types of assessment (that is, in-resolution and out-of-resolution). The 
results demonstrate that semi-supervised Mask R-CNN models are effective in detecting road distress. 
Nonetheless, the sensitive analysis is recommended in the future research to identify the optimal pseudo 
ratio that could generate the highest prediction accuracy.
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INTRODUCTION

Roadway cracks are amid the most prevalently 
observed road surface degradations. Cracks not only 
reduce road pavement performance but also threaten 
traffic safety [1]. To ensure the quality of road pavement 
surface and to engender a safe environment for all roadway 
users, efficient and reliable detection and the maintenance 

of roadway cracks are very substantial. Early inspection 
and detection can help circumvent roadway damage and 
possible failure [2]. However, the traditional manual 
inspection highly depends on the inspector’s engineering 
judgment and experience. It is prone to subjectivity since 
two inspectors can conclude different analyses for similar 
situations [3]. In addition, manual inspection is very time-
consuming and labor-intensive [4-5]. Hence, there is an 
imperative need to utilize diverse techniques and better, 
reliable, and efficient roadway crack detection strategies.

To address the urgent need for concise roadway 
crack detection, there is considerable interest in 
developing efficient and reliable algorithms to automate 
object detection with the help of rapid advancement in 
technology, namely, computer graphics, deep learning, 
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and computer vision. Automation of crack detection 
leads to more objective and standardized rehabilitation 
decisions [6]. With an expeditious evolvement of image 
analysis, automated roadway crack detection has been 
widely explored over the past few decades [7-11]. In 
general, automated road crack detection methods benefit 
from various deep learning models of object detection, 
including single-stage models, two-stage object detection 
algorithms, and models based on encoder-decoder 
structure. Single-stage object detection models such as 
Single Shot MultiBox Detector (SSD) model [12-13] and 
You Only Look Once (YOLO) treat object detection as 
a simple regression problem by taking an image input 
and learning the class probabilities and bounding box 
coordinates [14]. On the other hand, two-stage object 
detection algorithms include Region-based Convolutional 
Neural Networks (R-CNN) [15], Faster R-CNN [16], 
and Mask R-CNN [17]. These models utilize a Region 
Proposal Network (RPN) to generate regions of interest 
(RoI) in the first stage and then send the region proposals 
down the pipeline for object classification and bounding-
box regression. Compared to single-stage models, two-
stage models reach higher levels of accuracy, but with 
longer computation time. Furthermore, models based on 
encoder-decoder structure, including U-Net [18], SegNet 
[19], Fully Convolutional Network (FCNs) [20], CrackSeg 
[21], use recurrent neural networks for sequence-
to-sequence prediction problems. Encoder-decoder 
structure-based models tend to improve both efficiency 
and accuracy [22]. Another unique classification of 
object detection models includes fully supervised and 
semi-supervised models. Fully supervised learning is a 
subcategory of machine learning that utilizes fully labeled 
datasets to train its algorithms to classify data or predict 
outcomes accurately. As input data is fed into the model, 
the weight of the variables within the model are adjusted 
appropriately according to the cross-validation process 
[23]. This process eases training the model by providing 
a clear training dataset [24]. Due to these benefits, fully 
supervised object detection has been applied to a number 
of roadway crack detection models, including artificial 
neural networks [25], deep convolutional neural networks 
[26], and FCN [27]. Semi-supervised learning is similar to 
fully supervised learning. However, the major difference 
occurs in the data annotation. In semi-supervised 
learning, only a portion of the training data is labeled. 
The model is initially trained to predict the rest of the 
training dataset based on the information provided by the 
annotated data [28]. This method dramatically cuts down 
on the time required to annotate data for model training, 

which offers higher efficiency in model performance [29]. 
Due to these benefits, semi-supervised models have also 
seen some limited applications in transportation such as 
traffic incident detection [30], roadway crack detection 
[31], and roadway sign detection [32].

Similar to the large variety of CV in object detection, 
there is a wide range of CV methodologies for road 
crack detection from various perspectives. For starters, 
Prasanna et al. used computer vision techniques to detect 
and analyze cracks on a bridge by utilizing edge-detection 
based classification [33]. Another study by Yeum and 
Dyke also dedicated their work to automatically process 
and analyze a large volume of images of bridge cracks 
without controlling camera angles [34] A study by Zhang 
et al. trained a supervised deep neural network to classify 
features of each image patch into crack and non-crack 
in pavement images [35]. Additionally, Schmugge et al. 
(2017) adapted SegNet for crack segmentation in video 
frames and revealed that it could significantly improve the 
CNN-based method [36]. A study by Zhang et al. employed 
U-Net to process an image as a whole and generate a 
crack segmentation without pacifying and obtained an 
outstanding pixel-level accuracy [37]. Furthermore, a 
study by Singh & Shekhar, demonstrated that Mask 
R-CNN could be used to localize cracks and obtain 
their corresponding masks to extract other properties 
that are useful for the inspection [17]. Additionally, 
Attard et al. illustrated that a higher precision and recall 
value could be achieved through Mask R-CNN [38]. A 
study by Augustaukas and Lipnickas utilized U-Net 
convolutional neural network and its different layers for 
pixel-wise detection [39]. Moreover, a study by Zhou and 
Song demonstrated that heterogenous image fusion is a 
better alternative to image pre-processing [26]. A study 
by Yu et al adopted OTSU automatic threshold, guided 
filtering, and gamma image enhancement, then used 
the Zhang Suen skeleton extraction algorithm to extract 
crack skeletons [40]. The results demonstrated that the 
method was efficient and reliable. In addition to that, an 
ad hoc YOLOv2 was employed by Deng et al to detect 
concrete cracks from real-world images automatically 
[41]. The results demonstrated that the proposed mdoel 
outperformed Faster R-CNN in terms of both accuracy 
and inference speed. In recent studies, new deep learning 
models have also been proposed for crack detection, in 
particular, I-UNet [42], CrackU-Net [43], U-CliqueNet 
[44], SCHNet [45], U-HDN [46], and feature pyramid and 
hierarchical boosting network (FPHBN) [47]. 

Along with the multitude of methods used in roadway 
distress detection, many data collection methods were 
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also employed, primarily utilizing different camera types, 
including Pole cameras, wall-mounted cameras, and 
vehicle cameras, to name a few. In the field of remote 
sensing, applications of the unmanned aerial system (UAS) 
are becoming increasingly more popular. The primary 
advantage of UAS is its ability to carry a lightweight 
digital camera as well as its ability to have ample spatial 
coverage, which can be used to effectively and efficiently 
acquire imagery at unforeseen high resolution. UAS-
acquired imagery can characterize the detailed spectral 
features of the objects, which would further improve 
the detection accuracy and overall performance of CV 
applications. UAS applications are rapidly growing in fields 
such as transportation engineering [48-49], construction 
engineering [50-51], surveying and mapping [52], hazard 
mapping [53] and surveillance [54-55]. Furthermore, 
UAS is safe and can mitigate risk factors to acquire 
information at a safe distance remotely. Using advanced 
UAS in combination with image technologies and efficient 
algorithms can help overcome current challenges and be 
an effective tool for road crack detection.

Upon reviewing the above studies, it is clear that 
existing data and methodologies for roadway distress 
detection, although demonstrating some favorable results, 
can be improved further. Mobile Measurement System 
(MMS) collects existing data, primarily through vehicle-
mounted digital cameras or low-cost smartphone cameras, 
is often time-consuming, and provides minimal spatial 
coverage as the collected data is often from the driver’s 
point of view. In addition, the majority of the ongoing 
methodologies are based on single-stage detectors. Such 
methods are limited to producing the bounding box, 
and thus fail to provide geometric information such as 
dimensions, orientations, and pixel-wise segmentation 
of roadway cracking. Furthermore, limited studies 
have explored the semi-supervised learning approach 
for object detection. Consequently, it is necessary to 
provide additional research to further expand the overall 
understanding of CV’s applications in road distress 
recognition. To this end, the present study naturally 
extends one recent study by applying the semi-supervised 
algorithm to the Mask R-CNN models to detect and 
segment road cracks. Some appealing features are worth 
mentioning [56]. First, three distinct backbone models 
are evaluated and compared using average precision (AP) 
scores as the primary evaluation criterion. Second, image 
augmentation techniques are applied to UAS imagery 
to avoid overfitting. Third, different levels of unlabeled 
data are experimented along with eleven thresholds for 
comprehensive assessment.

METHODOLOGY

Data Collection Process
The study area is located in the city of San Dimas 

(latitude: 34° 06’ 45.75” N, longitude: 117° 49’ 21.35” W) 
covering an area of approximately 3,000 m2. The site is 
a paved residential street that varies in ground elevation 
by 3.6 m having a length of approximately 215 m. Two 
aerial surveys were performed consisting of a low- and 
high-resolution optical sensor. On April 15, 2020, the 
low-resolution (4:3 aspect ratio: 4,000 × 3,000) dataset 
acquired 101 images using a DJI Phantom 4 UAS with 
a 12.4-megapixel camera. On May 16, 2020 using a DJI 
Phantom 4 Pro v2.0 UAS with a 20-megapixel camera, 
the high-resolution (4:3 aspect ratio: 4,864 × 3,648) 
dataset collected 324 images. The UASs flew at about 37 
m above ground level collecting images at nadir with a 
forward overlap of 95%, a sidelap of 90%, and a flight 
speed of 1.8 m/s for a flight mission that lasted about 5 
minutes and 35 seconds. The flights were performed using 
an autopilot flight path produced in DroneDeploy [57]. 
For consistency, both aerial surveys followed the same 
framework. On average, there are approximately 198 and 
129 road surface distress instances per image for higher- 
and lower-resolution, respectively.

Data Annotation
The popular VIA Annotation Software [58], a 

lightweight and standalone web application annotation 
tool, was utilized for data annotation. Since the damage 
of the roadway is relatively small in such high-resolution 
images, the authors zoomed in at the scale of 7 times 
to 8 times the original scale to have a better look of the 
street. During annotation, each instance was cut if there 
was another road damage intersecting it or it is the end 
of that road surface defect instance. A cropped portion 
of a sample input annotated image is shown in Figure 1 
(captured at the scale 4x).

Semi-Supervised Learning
Deep learning networks demonstrated their 

capabilities on a wide range of supervised-learning tasks 
on extensive collections of labeled data such as ImageNet 
or COCO dataset. These deep models usually require a 
large amounts of labeled training data in order to provide 
remarkable performance on these tasks. However, the 
process of annotating these datasets is often difficult, 
costly, and time-consuming. For the field of computer 
vision, visual data can be acquired relatively easy, yet 
only a small portion of collected data are annotated, 
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steps. Initially, deep learning models are trained on the 
manually annotated training data. Then, the trained 
weights will be then loaded to these models to generate 
road distress detection on unlabeled portion of the dataset, 
which is also known as the pseudo-label. The arbitrary 
amount of newly created pseudo-label data is combined 
with the original labeled data resulting in the combined 
training dataset. Those deep learning models are then re-
trained on this combined dataset. The ratio of the pseudo-
label data to the total labeled data is also noted as pseudo-
ratio. Overall, the semi-supervised learning pipeline 
on road surface damage detection using Mask R-CNN 
variants is illustrated in Figure 2.

which leaves a significant number of dataset samples 
unlabeled. Under such conditions, semi-supervised 
learning (SSL) has emerged to resolve the lack of labeled 
data issue and opened an exciting new research pathway 
in deep learning. SSL is the middle ground between 
supervised and unsupervised learning. The principle 
of semi-supervised learning allows the models to take 
advantage of both labeled data and an arbitrary amount 
of unlabeled data for the training process in order to gain 
more understanding of the population. However, SSL is 
very sensitive. In other words, it is only applicable under 
certain conditions as it might also lead to the degradation 
problem in model’s performance. SSL contains 4 simple 

Figure 2. Semi-Supervised Learning Pipeline for Road Damage Detection.

Figure 1. Sample Annotation of Roadway Damage using VGG Image Annotator (VIA).
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Mask R-CNN
Mask R-CNN is a simple framework for object 

classification, detection, and instance segmentation, 
which can effectively recognize objects in an image 
while maintaining high-quality segmentation mask for 
each predicted instance. Object recognition has become 
fundamental visual tasks in the field of computer vision. In 
recent years, numerous deep learning object recognition 
models have been implemented on various open-source 
platforms. Mask R-CNN is also supported in Detectron2 
framework, which is an open-source software system by 
Facebook AI Research (FAIR) implementing most state-
of-the-art algorithms for object detection and classification 
task. Mask R-CNN expands from Faster R-CNN, which 
adopts two stages. The first stage extracts multi-scale 
features from the input image and generates the anchors, 
also known as the proposal bounding box. The second 
stage refines these anchors into bounding boxes with 
the according category and generates the segmentation 
masks. The general network structure of Mask R-CNN 
algorithm is demonstrated in Figure 3.

Backbone Network
Detectron2 supports variations of backbone as the 

feature exactor in the form of base_network-head format. 
The base networks are mainly variants of residual 
architecture: ResNet50 (R-50), ResNet101 (R-101), 

ResNeXt101 (X-101-32x8d). These base networks will be 
combined with another 3 different types of head known as 
FPN, C4, and DC5. 

a) ResNet
In recent years, neural networks have become deeper 

as the complexity of the machine learning tasks become 
more difficult and complex. Therefore, many state-of-the-
art networks have increased from solely a few layers such 
as AlexNet to over hundred convolutional layers with very 
complicated architecture structure. Due to the increment 
in the number of layers, more in-depth information 
regarding the input data will be extracted and learned 
through the deep learning algorithms resulting in better 
performance on predicting more complex functions. 
However, as the neural network becomes deeper, it 
suffers the huge training barrier, which is also known 
as vanishing gradients. Specifically, during the gradient 
descent process, back-propagation from the final layer to 
the initial layer is computed. Therefore, if the gradients are 
small, multiple multiplication between the weight matrix 
through each layer can either exponentially decrease 
to zero, or exponentially explode to a very large value. 
With the help of normalization through initialization or 
intermediate layer, deep neural network might be able to 
converge normally. However, when these deep networks 
are able to start converging to the minima, they may 

Figure 3. The Structure Diagram of Mask R-CNN Algorithm.
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Block is the standard block in ResNet variants where the 
input and output have the same dimension. Meanwhile, 
the architecture utilizes Convolutional Block when the 
dimensions do not match up.

This residual block or identity block is the fundamental 
component in ResNet architecture. ResNet architecture is 
then constructed from the combination of different residual 
blocks. Specifically, both ResNet-50 and ResNet-101, as 
mentioned above, have the same five-stage structure. The 
first stage only consists of the basic stem block, which 
is the combination of one convolutional neural network, 
followed by batch normalization layer, a non-linear 
action function, and a max pooling layer. Stages 2 to 5 
is stack of convolutional blocks and identity blocks. In 
total, ResNet-50 and ResNet-101 have 50 layers and 101 
layers, respectively. Their only difference is the number of 
convolutional blocks in stage 4, which is 5 blocks for R-50 
and 22 blocks for R-101.

b) ResNeXt
ResNeXt architecture further enhances the advantages 

of the original ResNet architecture by introducing the 
‘next’ dimension (also called cardinality). Building upon 
the principle of repeating same topology building blocks, 
ResNeXt expands the cardinality dimension by splitting 
the original space into subspaces with the same topology. 
These lower-dimensional representation embeddings will 
be transformed with arbitrary function T_i. The output 
from the transformation function of these subspaces 
will be then aggregated using summation. ResNeXt still 
maintains the parameters complexity of the building 

undergo degradation problem, meanig that the model’s 
accuracy gets saturated with increment in network 
depth. In other words, the network is able to predict 
the dataset’s function before reaching to the final layer. 
These additional layers are redundant and might make the 
model fail to learn the identity function to carry out the 
result to the output from the layer that the model already 
learned everything. As a result, deep residual network 
was proposed trying to solve this problem by introducing 
the new residual mapping function defined as:

h(x) = f(x) + x                                                             (1)

Where h(x) is the residual mapping function in term of 
input x and f(x) is the initial mapping function which is 
also in term of input x. 

Residual networks are able to better optimize the 
new residual mapping compared to the original mapping 
alone. With this new residual mapping function, residual 
network introduced shortcut path (or, skip connection), 
allowing the input information to flow through from layer 
to layer easily without going through any convolutional 
layers. In addition, regularization will skip through these 
additional new layers if they do not contribute to the model 
performance. In this case, the residual mapping h(x) will 
simply act as an identity function to carry out the output 
of the previous layer. As the result, the model prediction 
ability will not be affected from them. In residual 
network, there are two main types of blocks depending 
on whether the input and output’s dimensions are similar 
or different, which is illustrated in Figure 4. The Identity 

Figure 4. Convolutional Block in ResNet.
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block when compared with its ResNet counterpart. 
Specifically, in this study, the parameters complexity 
between R-101 and X-101 still remain the same. Overall, 
with the introduction of cardinality, it is believed to be 
more effective in training the deep residual models to 
adapt to new datasets.

c) FPN, C4, DC5
After the input image is fed through the different deep 

residual base networks to extract features, these output 
features are fused with feature pyramid network (FPN) 
in order to obtain stronger semantic feature maps, which 
contribute directly to the ability to accurately predict 
road surface damage instances. As the input image is 
forwarded deeper through the deep residual network, the 
spatial resolution deceases and more high-level features 
are detected, leading to richer semantic information for 
deeper layer. However, the information regarding the 
targets such as locations is no longer precise as information 
loses due to the up-sampling and down-sampling layers. 
In order to obtain both high resolution and rich semantic 
information, top-down pathway is added alongside with 
the deep residual network. In top-down pathway, lateral 
connection is applied between the reconstructed layers 
from upsampling and the corresponding feature maps 
from residual network to help better predict objects’ 
location. Aside from FPN, Detectron2 also supports the 
experimental head C4 and DC5. C4 is the baseline model 
implemented in the Faster R-CNN paper utilizing a ResNet 
conv4 backbone with conv5 head. Meanwhile, DC5 
incorporates a ResNet conv5 backbone with dilations in 
conv5, a standard convolutional layer and fully connected 
heads for mask and bounding box prediction accordingly, 
which is proposed in Deformable ConvNet paper [59].

Region Proposal Network (RPN)
RPN is a unique model module that includes both 

regressors and classifiers. Using sliding mechanism, RPN 
scans through different-scale strong semantically features 
maps outputted from backbone network and proposes 
region of interest (ROI) that may contain objects. RPN 
generates multiple anchors with the anchor point placed 
in the middle of the sliding window at different sizes 
and scales. These proposals will be then fed through the 
classifier and the regressor. The classifier is responsible 
for providing the probability of objects that are present 
within the proposed region. On the other hand, the 
regressor will refine these ROIs and output the bounding 
box coordinates. By utilizing anchors, the model is 
translational invariant. In other words, if the input image is 

translated using various transformations such as rotation, 
resize, brightness level, there is no variance on the output. 

ROIAlign
Those regions of interest outputted from RPN are 

then mapped to multi-level features maps from backbone 
model using ROIAlign to extract the corresponding 
features resulting in a set of shared feature maps, which 
are subsequently sent to the fully connected layers and 
fully convolutional network for object classification and 
mask segmentation task, respectively. The original ROI 
Pooling method from Faster R-CNN introduced a lot of 
quantization operations to map the generated proposals 
to retrieve integer value x and y coordinate. However, 
as the ROIs are not aligned with the original grid of the 
feature maps, ROI Pooling suffers from misalignment 
issue leading to the lower performance due to the loss 
of lots of useful information. This misalignment issue 
might not affect the classification and detection ability 
of the model. Yet, since mask head requires more fine-
grained alignment, the problem adversely affects the 
process of generating precise pixel-level segmentation. 
Thus, Mask R-CNN adopts new pooling layer ROIAlign 
to further enhance the mapping of the proposed ROIs 
to the multi-scale semantic feature maps. The problem 
of harsh quantization of ROI Pooling layer is resolved 
by applying ROIAlign layer with bilinear interpolation 
algorithm on the aligned ROI. Initially, the ROIAlign layer 
traverses each region of interests and keeps the floating-
point number for the ROI position unquantized. These 
proposals are divided into k x k cells with unquantized 
boundary. Within each cell, four fixed-value coordinates 
are computed using bilinear interpolation, which are then 
aggregated with either max pooling or average pooling 
operation. The result of ROIAlign layer is fixed-size ROIs 
with no quantization error.

Loss Function
Mask R-CNN is trained based on multi-task loss 

function that is a combination of classification, localization 
loss (previously introduced in Faster R-CNN), and 
segmentation mask loss as illustrated in Equation 2:

L = Lcls + Lbox + Lmask                                                      (2)

Where Lcls, Lbbox, Lmask are classification loss, bounding 
box loss and mask segmentation loss accordingly. Lcls and 
Lbbox are further divided into corresponding loss inside 
RPN and Box Head module defined in Equation 3 and 
Equation 4.
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Lcls = Lcls_rpn + Lcls_boxhead                                                   (3)

Lbox = Lbox_rpn + Lbox_boxhead                                                (4)

Where Lcls_rpn is the loss for anchor binary classifier;  
Lbox_rpn is the bounding box regression loss of RPN;  
Lbox_boxhead represents the loss of the classifier within the 
box head of Mask R-CNN; and Lbox_boxhead denotes the loss 
for bounding box refinement. The detailed calculations 
for each items are shown below.

•  Loss function for classification task:

                                                                                   (5)

Where    is log loss function between the 
predicted probability of an anchor i having an object (pi), 
and the binary ground truth label of anchor i having an 
object (      can be defined as:

                                                                                    (6)

• Loss function for bounding box regression task:
                       
                                                                                   (7)

Where is the smooth L1 loss function between the 
predicted four parameterized coordinates ti and ground 
truth coordinates  .

• L_mask is defined as average binary cross-entropy 
loss for pixel-level segmentation task:

               
                                                                                   (8)

Where yij is the label for the pixel at position i, j in the 
region of size m x m,      is the predicted label for the same 
pixel for the ground-truth class k.

Training

Hyperparameters
All the deep learning models used in the experiments 

were trained on a high-performance computing cluster. 
Each model was trained on a single node using 2 NVIDIA 
Tesla P100 graphics card machine which has 64 GB 
memory each. All the Mask R-CNN models utilized the 
weights pre-trained on MS-COCO dataset to initialize 
the training process, which were then fine-tuned for the 
road surface damage detection task. Specifically, for this 
research, only 3 different backbone models R50, R101, and 
X101 are investigated. Some important hyper-parameters 
are modified to better adapt with the roadway distress 
dataset summarizing in Table 1.

Augmentations
To make the models more robust, augmentations were 

applied to the input image by modifying the DataLoader 
from Detectron2 in order to avoid overfitting. However, 
the model only applies random horizontal and vertical 
flipping transformation with the probability of 0.6 in 
the second time training of the deep residual networks, 
because the graphical computing resources would run out 
of memory as more instances are added to the training 

Lcls_rpn = Lcls_boxhead =       ∑i Lcls ( pi , pi ) *1
Ncls

Lcls( pi , pi ) = – pi log(pi) – (1 – pi )log(1-pi) * * *

Lcls_rpn = Lcls_boxhead =       ∑i Lcls ( pi , pi ) *1
Ncls

Lcls_rpn = Lcls_boxhead =       ∑i Lcls ( pi , pi ) *1
Ncls

Lbox_rpn = Lbox_boxhead =         ∑i pi L1       ( ti – ti )* *
λ smooth

Nbox

Lbox_rpn = Lbox_boxhead =         ∑i pi L1       ( ti – ti )* *
λ smooth

Nbox

Lbox_rpn = Lbox_boxhead =         ∑i pi L1       ( ti – ti )* *
λ smooth

Nbox

Lmask = –        ∑1≤ i , j ≤ m [ yi j log (ŷi j) + (1 – yi j) log (1 – ŷi j)
k k1

m2

Lmask = –        ∑1≤ i , j ≤ m [ yi j log (ŷi j) + (1 – yi j) log (1 – ŷi j)
k k1

m2

Table 1. Summary of Important Hyperparameters in Detectron2 for Road Damage Detection Task
Hyper-parameter name Detectron2’s parameter name Value

Warmup iteration cfg.SOLVER.WARMUP_ITERS 2000
Base learning rate cfg.SOLVER.BASE_LR 0.001
Training iteration cfg.SOLVER.MAX_ITER 30000
Checkpoint period cfg.SOLVER.CHECKPOINT_PERIOD 10000
Number of classes cfg.MODEL.ROI_HEADS.NUM_CLASSES 1

Batch size per image cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE 128
Anchor sizes cfg.MODEL.ANCHOR_GENERATOR.SIZES (4, 8, 16, 32, 64)

Anchor aspect ratio cfg.MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS (0.5, 1.0, 2.0)
Input image’s width cfg.INPUT.MIN_SIZE_TRAIN, cfg.INPUT.MIN_SIZE_TEST 600
Input image’s height cfg.INPUT.MAX_SIZE_TRAIN, cfg.INPUT.MAX_SIZE_TEST 800
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dataset. However, during the first-time training, besides 
horizontal and vertical flipping, the input data were also 
augmented with random brightness with the intensity 
within the range of 0.3 to 1.8, in order to make the training 
data to be more diverse in each training iteration. 

Evaluation Criteria
To determine the effectiveness of variants of Mask 

R-CNN models in the study, the average precision (AP) 
score was evaluated. In COCO dataset or those datasets 
having similar format, mean average precision (mAP) 
often refers to the average precision. In general, the 
precision is defined by Equation 2:

                                                                                   (9)

To further understand the AP score, recall is necessary 
to be computed along with precision, which is shown in 
Equation 3:

                                                                                  (10)

AP score can then be calculated as the area under the 
precision and recall curve. The corresponding expression 
is shown as below:

                                                                                  (11)

Where p(r) is the precision function in term of recall. T is 
the IoU threshold. APT is the average precision score at a 
specific threshold T. 

RESULTS

Inference 
The inference was done using the Detectron2 

framework. Table 2 shows the average time taken to 
detect road distress instances per image for the different 

p = +TP
TP+FP total detections

TP

r = +TP
TP+FN total groundtruths

TP

APT = ∫0  p(r)dr1

Table 2. Detection Time for Different Backbone Model with Pseudo Ratio Average 
over 11 Threshold Values from 0.20 to 0.70 with Step Size of 0.05

Models Pseudo Ratio Resolutions for Training AIS on L(s) AIS on H(s)
mask_rcnn_R_50_FPN_3x 0.75 H 12.05 14.49

L 11.33 14.51
mask_rcnn_R_50_FPN_3x 0.5 H 12.53 14.10

L 9.23 1.42
mask_rcnn_R_50_FPN_3x 0.25 H 11.33 13.60

L 6.84 8.34
mask_rcnn_R_101_FPN_3x 0.75 H 12.22 14.82

L 10.70 13.70
mask_rcnn_R_101_FPN_3x 0.50 H 13.32 14.80

L 8.39 10.03
mask_rcnn_R_101_FPN_3x 0.25 H 8.48 10.45

L 6.74 8.40
mask_rcnn_X_101_32x8d_FPN_3x 0.75 H 12.19 14.37

L 10.17 11.60
mask_rcnn_X_101_32x8d_FPN_3x 0.5 H 12.12 13.08

L 7.72 8.72
mask_rcnn_X_101_32x8d_FPN_3x 0.25 H 6.53 8.42

L 5.69 6.88
Notes: 1. AIS is Average Inference Speed; 2. H represents high resolution and L represents low resolution; 3. Pseudo ratio is 
defined as the ratio of the pseudo-label data to the total labeled data.
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scenarios of backbone, pseudo ratio and image resolution.
As shown in Table 3, it is clear that the models take 

more time to predict road surface defects based on high-
resolution pictures in most cases.  With the speed of 1.8 
m/s, the drone can travel approximately a distance of 6.04 
m and 13.26 m while processing the images for detection 
purpose. Therefore, before the UAS is flies to the next area 
for next frame capture, the detection system is done with 
prediction of the present picture. In other words, the Mask 
R-CNN satisfies the real-time prediction requirement. 
The sample detection of road distress instances predicted 
for one high resolution imagery is shown in Figure 5.

Performance Evaluation
For comprehensive assessment of the model 

performance, the AP scores of the detectors were 
reported for various scenarios. First, both in-resolution 
(i.e., training and validating the models based on the 
data of the same level of resolution, high or low) and out-
of-resolution (or, model training and validation based 
on the different levels of resolutions) evaluations were 
conducted. Second, three levels of pseudo ratio (that is, 
0.25 or low, 0.50 or medium, 0.75 or high) were employed. 
Three, eleven threshold values were explored that range 
from 0.2 to 0.7, with the increment of 0.05. Finally, as 
mentioned before, three categories of backbones were 
chosen and tested that contain R_50, R_101 and X_101. 
Overall, there are 198 pairs of AP scores observed. To 
identify the reliable relationship among the detection 
performance (based on both in-resolution and out-of-
resolution) and the influential factors including pseudo 
ratio, threshold value, input image resolution and the 
backbone model, the statistical analysis was conducted in 
two ways. First, the association was performed between 
detection performance and each of the individual factors 
via Analysis of variance (ANOVA), paired t-test, and 
pairwise correlation analysis. Second, a joint model was 
developed that estimated the above two performance 
scores with all contributing factors being considered at 
the same time. The common trends illustrated in both 
statistical analyses are anticipated to yield more reliable 
conclusions with greater confidence. 

First, the authors is interested in identifying the 
relationship between categorical variables (or, backbone 

Table 3. Result of ANOVA Analysis between AP Scores and Categorical Variables
Resolution Type Scenarios Df Sum of Square Mean of Square F Value Pr(>F)

In Resolution Backbone Model 2 1849 924.6 1.089 0.339
Residuals 195 165634 849.4

Out of Resolution Backbone Model 2 1222 611 0.489 0.614
Residuals 195 243701 1250

In Resolution Level of Pseudo Ratio 2 35766 17883 26.480 6.7E-11
Residuals 195 131717 675

Out of Resolution Level of Pseudo Ratio 2 11847 5924 4.956 0.008
Residuals 195 233075 1195

Notes: 1. Df represents the degree of freedom; 2. Pr(>F) represents the statistical significance of two groups relying on F value 
represents the statistical significance of two groups relying on F value; 3. The bold text indicates the significant difference with 
the p-value being less than 0.05.

Figure 5. The Sample of Road Distress Instances Detected 
for Higher Resolution Image.
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types and pseudo ratio levels) and AP scores. The popular 
ANOVA test was conducted with the detailed results 
being shown in Table 3. The degree of freedom, which is 
2 for all cases, since backbone and pseudo ratio have three 
categories.  The p-value Pr(>F) represents the statistical 
significance of two groups relying on F value. Usually, 
0.05 is a critical value to identify their correlation. If 
p-value is less than 0.05, these two groups are supposed 
to be statistically correlated with each other. In review 
of Table 3, it is known that backbone models seem to 
exert no statistically significant influence on the two AP 
scores. However, the level of pseudo ratio demonstrates 
statistically significant impact on both in resolution and 
out-of-resolution AP scores. Scrutiny of the 195 pairs of 
scores indicates the lowest pseudo ratio (i.e., 0.25) yields 
the largest average AP scores, while the highest ratio of 
0.75 yields the least average AP scores. Given the benefit 
of the semi-supervised algorithm in enhancing the data 
sample size for training and possibly the associated 
prediction accuracy, it is highly recommended to perform 
a sensitive analysis in the future for the ideal pseudo ratio 
that generates the highest AP scores at different levels of 
sample size.

Similar procedure was followed to determine the 

relationship between imagery resolution and AP score. 
To perform the analysis, the paired t-test was approached 
as resolution has only two categories (high and low) and 
images are created from the same location. The t-test 
results in Table 4 clearly show the statistically significant 
difference exists (the p-value less than 0.05) among 
resolution and AP score. The findings indicate that high-
resolution have better detection performance than the low 
resolution.

In addition to the relationship between AP scores 
and the categorical variables, the study also explores the 
relationship between AP scores and the numerical variables 
such as Threshold value. Even though the pseudo ratio was 
treated as the categorical level in the ANOVA test, it can be 
used as numerical value for detailed correlation analysis. 
Hence, the Pearson’s correlation coefficients for the pair 
of AP scores and both threshold and pseudo ratio were 
calculated. The detailed correlation results are presented 
in scatterplot matrices in Figure 6. As illustrated in the 
plots, the distributions of the variables are shown on the 
diagonal, the upper triangle of the matrix represents the 
value of correlation coefficient, and the lower triangle of 
the matrix illustrates the bivariate scatterplots. In review 
of Figure 6, it is known that both threshold and pseudo 

Figure 6. Scatter Plot and Correlation Matrix. Note: The font size associated with the correlation coefficients indicates the 
statistical significance. The larger the font size, the more statistically significant the coefficient.

Table 4. Result of T-Test between Resolution and AP Score
Items Degree of freedom t-value Mean of the difference p-value

In_Resolution_AP 98 20.425 44.123 <2.2E-16
Out_of_Resolution_AP 53 -51.307 -66.428 <2.2E-16

(a) (b)
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ratio appear to have a negative correlation with the AP 
scores, which signifies that the increase of the threshold 
values or Pseudo Ratio would reduce the AP scores for 
both cases of in-sample and out-of-sample detections. 
The explanation is that the stricter criterion (or, higher 
threshold) would reduce the number of TPs, which also 
tend to be decreased with more unlabeled data being 
used in the training process. However, for pseudo ratio, 
given the relatively small coefficient magnitude for out 
of resolution (-0.22) and the small statistical significance 
for in resolution (or, the smaller font size associated with 
-0.45), it is expected that the pseudo ratio is not strictly 
linearly related with the detection performance. Such 
phenomenon suggests the need to further explore the 
actual relationship between pseudo ratio and AP scores, 
in hopes of identifying the optimum pseudo ratio yielding 
the highest detection accuracy.

Despite that the relationship between detection 
performance and individual factors is explored using 
various tests, the “true” influence of each factor on the 
AP scores with the co-existence of other variables is 
still unknown. To address this issue, the present study 
employed a bivariate random effect model to capture the 
associated relationship while considering the unobserved 
heterogeneities shared by the two AP scores. The detailed 
model results are shown in Table 5.  As illustrated, some of 
the results in the joint model are consistent with previous 
tests related with individual factors. Threshold value and 

pseudo ratio are again negatively correlated with both AP 
scores. Interestingly, the relationship between imagery 
resolution and AP scores seems to be inconsistent with 
previous result.  Based the results of t-test, high image 
resolution tends to have statistically better results than low 
resolution for both cases of AP score. Nonetheless, the joint 
model demonstrates that low resolution has statistically 
larger AP score than the base resolution in the case of 
out of resolution identification.  A possible explanation 
may be that the lower resolution image dataset needs less 
iterations for the model training process, which leads to 
much better performance when using the same backbone 
models and threshold values. In addition, different than 
the ANOVA test results, the backbone of X_101 appears 
to be significantly better than the base of R_50 for both 
AP scores, while R_101 turned out be inferior to R_50 
in the case of out of resolution assessment. The above 
phenomena signify the importance of considering all 
factors together simultaneously.

CONCLUSIONS 

Roadway distress detection is important for generating 
a safe and comfortable driving environment. However, 
compared to other roadway objects, it is more time-
consuming to detect the roadway distress due to its 
relatively small size of the and sometimes the large 
number of instances under some conditions. Therefore, 

Table 5. Joint Model Parameter Estimates

Variables
β1 (In Resolution AP) β2 (Out of Resolution AP)

Mean SD Mean SD

Fixed Effects
(Intercept) 143.75 4.234 -173.583 4.896
Backbone Model mask_rcnn_R_50_FPN_3x (Base)

mask_rcnn_R_101_FPN_3x -3.305 2.045 -2.465 1.213
mask_rcnn_X_101_32x8d_FPN_3x 4.164 2.045 3.565 1.213

Resolution High (base)
Low -43.273 1.670 66.109 0.990

Threshold Value -40.113 5.220 -30.724 3.117
Pseudo Ratio -61.224 4.068 -37.570 2.419
Random Effects
Observation. ID 5.326 3.457 4.366 3.014
Notes: 1. SD represents standard deviation; 2. The bold cells represent the variables which are statistically significant.
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there is a high demand for easy, efficient, and ideally 
cheap approaches to recognizing the surface damage on 
the roadway. The previous research (56) demonstrated 
the great potential of the freely available Mask R-CNN 
models in detecting the road distress. However, the authors 
recommended to enhance the model performance by using 
more data for model-training. Given the irregular shape, 
small area size, and occasionally very large number, of 
the road distress objects, it often becomes arduous to 
annotate the required huge number of distress instances 
for the supervised learning during the training process. 
As a special instance of weak supervision, the semi-
supervised learning, via combining the unlabeled data 
with some amount of labeled data, can help reduce the cost 
associated with the labeling process, while maintaining 
or even improving the learning accuracy. Albeit with the 
documented advantages, semi-supervised learning has 
seen limited applications in transportation field. To this 
end, the authors extended the previous research (56) by 
applying the semi-supervised learning algorithm to detect 
the roadway distress, whose fully labeled training sets are 
often infeasible because of the high labeling cost resulting 
from the supervised learning. Compared with the similar 
studies in the literature, the present research further 
expands the toolset for road distress detection with the 
following contributions and features. 

1. Both low and high resolution UAS imagery data were 
collected by DJI Phantom 4 with a 12.4-megapixel 
camera and DJI Phantom 4 Pro v2.0 UAS with a 
20-megapixel camera, respectively. 

2. Three levels of pseudo radio (that is, 0.25 or low, 
0.5 or medium, 0.75 or high) were experimented 
along with eleven thresholds and three backbone 
types for the comprehensive comparison of model 
performance. 

3. Detailed statistical analysis was performed on the 
raw results to identify the relationships between AP 
scores and individual factors, and the co-influence 
of a set of factors on the detection performance.  

In review of the detailed results, the following major 
conclusions were drawn:

1. Semi-supervised Mask R-CNN models appear to 
be effective in detecting road distress in most cases. 
This finding indicates the possibility of a high 
detection accuracy with low labeling cost, which is 
ideal for roadway distress given the nature of this 
type of object. 

2. Higher thresholds would lead to lower AP scores 
as the stricter detection standard tends to remove 
more false positives. 

3. For imagery resolution, the high resolution 
outperforms the low counterpart, if no other 
influential factors are considered. However, with 
the existence of other covariates, the low- resolution 
yields surprisingly better performance in case of 
out-of-resolution assessment. It is possible that 
the smaller low-resolution data may require less 
iterations during the training process.

4. Overall, the pseudo ratio tends to have a negative 
relationship with the model performance. However, 
the correlation between pseudo ratio and the AP 
score is not statistically significant for in-resolution 
assessment, and the correlation coefficient 
magnitude for the case of out-of-resolution is 
somewhat small. Such fact implies the ratio of the 
unlabeled data is not strictly linearly related with 
the detection performance, and there is a need 
to perform the sensitive analysis to identify the 
optimal pseudo ratio that could generate the highest 
prediction accuracy.  

Albeit with unique contributions and exciting 
research findings, the present work can be further 
enhanced in different ways. First, only three pseudo 
ratios were explored that demonstrated non-significant 
correlation with the detection performance. It is highly 
recommended that more pseudo ratios be analyzed due to 
the sensitiveness of the number of unlabeled data to the 
prediction accuracy. Second, three Mask R-CNN models 
were experimented. More models based on different 
backbones or other advanced CV tool such as YOLOv4 
could be approached for more reliable results. Third, 
instead of the simple binary detection regarding whether 
there is a road distress or not, the study can be expanded 
to further classify distress objects into different categories 
in terms of dimension or orientation, which may be more 
insightful to the roadway professionals. Finally, more 
detailed information about the study (e.g., code) could be 
obtained from the dedicated website: https://github.com/
KossBoii/SS_Roadstress_Detection.git.
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