
August 2024    Vol. 2 No 2    American Journal of Student Research    www.ajosr.org 52

American Journal of Student Research

Spatial and Temporal Synergy: Advanced Autoregression 
Models for Global Agricultural Development Insights

Chris Cheung

Diamond Bar High School, 21400 Pathfinder Rd, CA 91765, USA

ABSTRACT

Accurate crop production predictions are crucial for global food security and effective agricultural 
policymaking. Traditional predictive models often struggle to capture the complex spatiotemporal dynamics 
qualities in agricultural data. This research aims to improve crop production index predictions by integrating 
temporal agricultural data from 1990 to 2021 with geospatial information for 162 countries. Advanced 
time-related architectures, including autoregression (AR), vector autoregression (VAR), spatial temporal 
autoregressive (STAR), and spatial temporal vector autoregressive (STVAR) models are explored to address 
the limitations of traditional methods.

The study also uses geospatial data to improve the spatial influences inside the models. By combining 
temporal data (number of years) with geospatial coordinates (longitude and latitude), the research develops 
predictive models that could better capture the underlying patterns affecting crop production. Various model 
training measurements are applied to optimize model performance.

The outcomes demonstrated that incorporating temporal with spatial data significantly increases the 
precision of crop yield forecasts as compared to conventional models. The research highlights how the 
inclusion of both temporal and spatial variables in agricultural predictive modeling can provide useful 
information for policy makers, farmers and the rest of the actors in agriculture. By creating a platform for 
using advanced autoregression models and spatiotemporal data integration, it would help improve decision 
making in agriculture as well as resource management.
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INTRODUCTION

As is well known, agriculture is fundamental to food 
security, economic development, resource management, 
and public health. Sustainable agricultural practices and 

technological advancements are essential for meeting 
future challenges and promoting a resilient and secure 
food system (1). In some developing countries, it can 
even account for more than 25% of Gross Domestic 
Product (GDP) (2). However, agricultural development 
faces multiple problems, such as climate change, resource 
scarcity, and the need for sustainable practices (3), to 
list a few. Accurate predictions for crops, livestock, and 
grain production indices are crucial for addressing the 
challenges faced by agricultural development. Better 
planning, resource allocation, and risk management, 
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which are essential for enhancing food security and 
sustainable agricultural practices, are possible through 
these predictions.

Complex time series models are useful for time series 
analysis because they may be utilized to capture temporal 
dependencies, such as autoregression (AR) and vector 
autoregression models (VAR) (4). It is necessary to take 
spatial data into account when forecasting agricultural 
indicators. These models can often provide support where 
traditional models fail by using both time series and 
spatial data. More accurate predictions are produced by 
spatial-temporal models, including the STAR and STVAR 
models, which consider the combined influence of space 
and time. Conventional models often consider time and 
space separately or ignore their spatial component. Still, 
the utilization of spatial-temporal analysis remains a 
rather underapplied technique in the field of agriculture. 
Because of this, the author applied spatial-temporal 
models in an attempt to close a research gap.

Extensive spatiotemporal data provides a strong 
basis for precise agriculture index predictions. Forecasts 
for crops, livestock, and grain production indices are 
more accurate and reliable when geographical data is 
incorporated into agricultural prediction algorithms. 
Stakeholders can increase agricultural output, encourage 
sustainable practices, and make better decisions through 
analyzing models that can acknowledge the geographic 
distinctions between each country (5). On the other 
hand, temporal data collected over an extended period 
makes it possible to analyze past patterns, the effects of 
climate change, the influence of economics and policy, 
and seasonal variations. Predictive models also become 
more accurate when temporal data is incorporated, which 
helps with decision-making and encourages sustainable 
farming methods. (6). Through implementing both 
thorough spatial and temporal data, models can facilitate 
improved analysis in the agriculture sector, resulting in 
more sensible and useful decisions.

To improve decision-making, this study aims to 
evaluate and identify reliable predictive models that offer 
insightful information about future agricultural trends. 
These predictions can be used by those in the agriculture 
industry to create plans that will improve food security 
and encourage sustainable farming methods. Better 
agricultural forecasts also help farmers make more 
educated decisions about when to plant and harvest, 
which could result in more revenue. These models, for 
instance, might be used by farmers to maximize the 
use of resources for insect control, fertilizer application, 
and water consumption. As a result, crop yields can be 

increased, and environmental impact can be decreased 
with effective resource management (7). Policymakers 
can also utilize these forecasts to support insurance and 
subsidy programs for farmers, ultimately stabilizing the 
agricultural economy (8).

DATA DESCRIPTION

To satisfy aforementioned research objectives, the 
author took advantage of the Kaggle database, which 
provides high-quality data and easy accessibility to 
datasets pertaining to real-world situations. The Kaggle 
dataset used for this study consists of data collected 
from 162 countries throughout the years 1990 to 2021 
(9). The dataset is a collection of agricultural indices and 
geographical data, such as crop production, livestock 
production, grain production, and agricultural land. 
However, the data did not include spatial features. The 
author collected spatial data from exhaustive research 
on Google, which is presented as longitude and latitude. 
There are over 5200 data points in the collected dataset, 
which covers 31 years across 162 countries. The large 
dataset can satisfy the main objective of the paper to find 
the best method of predicting agricultural indices. 

Overall, there are a total of 8 variables, whose data 
were collected from 162 countries. The corresponding 
descriptive statistics of the various variables are shown 
in Table 1.

METHODOLOGY 

This study implements data gathered from 162 
countries from the Kaggle dataset to determine which 
method is best for the prediction of rural development 
variables. The data includes a set of variables as shown 
in Table 1. AR, VAR, STAR, and STVAR models will be 
used for this study to provide more flexibility in handling 
nonstationary temporal as well as spatial data.

The author selected LA and Pop% as the predictors, 
which are used across all models. Reasons are that the 
dynamics of the rural population percentage impact 
the labor force available for agricultural activities, 
affecting production capabilities (10). Additionally, more 
agricultural land is directly linked to production capacity, 
with more land generally allowing for higher production 
volumes as it provides necessary space and resources for 
crops, raising livestock, and grains (11).

The cleaning process for the datasheet consisted of 
removing countries that had no data for CPI, GPI, and 
LPI. This process reduced the number of countries from 
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217 to 162. These countries will not be used in the model 
nor in any calculations. The following subsections (3.1 to 
3.5) includes AR, VAR, STAR, STVAR, and temporal lag 
calculation in order.

For simplicity, all variables will be shortened: CPI is 
C; GPI is G; LPI is L; Land Area is LA; Pop% is P; Year 
is Y; Latitude is Lat; Longitude is Lon. See Equations (1) 
– (12) and Tables 2-5. 

Autoregression Model Calculations 
An autoregression model is used in time series analysis 

to get the inherent temporal structure of data to make 
forecasts. The concept behind an AR model is that past 
values in a time series contain useful information about 
future values. The model predicts the current value based 
on a linear combination of its previous values, adjusted by 
a constant and a white noise error term. This is presented 
in the AR model equation, which regresses the current 
value of the series, on its previous values, where p is the 
order of the model. As shown in Equation (1), (2), and (3), 
the autoregressive model uses LA, P, and Y as predictors. 

Ct = αC + β1C{t-1} + β2 LAt + β3Pt+ β4Yt + ϵt                   (1) 

Gt = αG + β1G{t-1} + β2LAt + β3Pt + β4Yt+ ϵt                    (2) 

Lt = αL + β1L{t-1} + β2LAt+ β3Pt+ β4Yt + ϵt                     (3)

Where: αC, αG, αL are the intercept terms for CPI, GPI, 
and LPI, respectively; β1 is the coefficient for the lag 1 
term of the dependent variable;β2 is the coefficient for 

Agricultural Land (LAt); β3 is the coefficient for Pop% 
(Pt); β4 is the coefficient for Year (Yt); ϵt  is the error term.

 
Vector Autoregression Model Calculations 

A vector autoregression model differs significantly 
from an autoregression model in its scope and application. 
While both models are used for time series predictions, 
the difference lies in the number of time series they handle 
and how they account for relationships among these series. 
Each variable is modeled as a linear function of its own 
past values as well as the past values of all other variables 
in the model. As shown in Equation (4), the future value of 
CPI would be predicted not only by its own past values but 
also by the past values of GPI and LPI. The same follows 
for Equations (5) and (6). This means that VAR models 
can capture the relationships among multiple variables.

Ct = αC + β1C{t-1} + β2G{t-1} + β3L{t-1} + β4LA{t-1} + β5P{t-1} + 
               
               β6Yt+ ϵ{C,t}                                                    (4)
 
Gt = αG + β1C{t-1} + β2G{t-1} + β3L{t-1} + β4LA{t-1} + β5P{t-1} + 
 
               β6Yt+ ϵ{G,t}                                                    (5)

Lt = αL+ β1C{t-1} + β2G{t-1} + β3L{t-1} + β4LA{t-1} + β5P{t-1} + 

               β6Yt+ ϵ{L,t}                                                      (6)

Where: αC, αG, αL are the intercept terms for CPI, GPI, and 
LPI, respectively; β1 is the coefficient for the lag 1 term 

Table 1. Descriptive Statistics of the Various Variables Used for Autoregression (AR), Vector Autoregression (VAR), 
Spatial-temporal Autoregression (STAR), and Spatial-temporal Vector Autoregression (STVAR) Models from 1990 to 2021

Variables Description Min Max Mean Std.
LA Land Area (square kilometers) 3.0 5,206,950.00 230076.7 633485.90
Pop% Rural population as a percentage in a country 0% 94.6% 42.67% 24.49%
LPI Livestock Production Index 1.3 447.5 88.56 29.35
GPI Grain Production Index 3.1 578.7 88.52 31.99
CPI Crop Production Index 0.1 727.3 90.32 38.70
Lat. Latitude N/A N/A N/A N/A
Long. Longitude N/A N/A N/A N/A
Year Years 1990 - 2021 N/A N/A N/A N/A

Note: Std. represents standard deviation. N/A means not applicable.
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spatial interdependence also makes use of a KNN 
technique rather than a spatial weight matrix. The author 
employed latitude and longitude as spatial variables, as 
demonstrated by Equations (10), (11), and (12).

C(t) = αC + β1C{t-1} + β2G{t-1} + β3L{t-1} + β4LA{t-1} + β5P{t-1} 

               + β6Lat{t-1} + β7Lon{t-1} + β8Y{t} + ϵ{C,t}         (10) 

G(t) = αG + β1C{t-1} + β2G{t-1} + β3L{t-1} + β4LA{t-1} + β5P{t-1} 

               + β6Lat{t-1} + β7Lon{t-1} + β8Y{t} + ϵ{G,t}         (11) 

L(t)= αL+ β1C{t-1} + β2G{t-1} + β3L{t-1} + β4LA{t-1} + β5P{t-1} 

               + β6Lat{t-1} + β7Lon{t-1} + β8Y{t} + ϵ{L,t}              (12)

Where: αC, αG, αL are the intercept terms for CPI, GPI, and 
LPI, respectively; β1 is the coefficient for the lag 1 term 
of the dependent variable; β2 is the coefficient for the lag 
1 term of GPI; β3 is the coefficient for the lag 1 term of 
LPI; β4 is the coefficient for Agricultural Land (LA{t-1}); β5 
is the coefficient for Pop% (P{t-1}); β6 is the coefficient for 
Latitude (Lat{t}); β7 is the coefficient for Longitude (Lon{t}); 
β8 is the coefficient for Year (Y{t}); ϵ{C,t} , ϵ{G,t}, ϵ{L,t} are the 
error terms for CPI,GPI,and LPI,respectively.

Determining the Order of Temporal Lags
In this study, the Akaike Information Criterion (AIC) 

formula was used to calculate the ideal sequence of 
temporal lags. It assesses how well the model fits the data 
while considering its complexity. Finding the lowest AIC 
value, which represents a good balance between fit and 
complexity, is the goal. The ideal order of temporal lags is 
indicated by the lowest AIC score. 

AIC = 2k – 2ln(L)                                                    (13)              

Where: k is the number of estimated parameters in the 
model; L is the maximum value of the likelihood function 
for the model.

RESULTS 

Presented in this section are the findings from our 
analysis of the data collected. The results reveal several key 
trends and patterns that address our research questions. 
Each of the previously stated methods are applied to 
the database and used to reveal relationships between 
the predictors and respective dependent variables. For 

of the dependent variable; β2 is the coefficient for Grain 
Production Index (G); β3 is the coefficient for Livestock 
Production Index (L); β4 is the coefficient for Agricultural 
Land (LA); β5 is the coefficient for Pop% (P); β6 is the 
coefficient for the centered year value (Y); ϵ{C,t} ,ϵ{G,t}, ϵ{L,t} 
are the error terms.

Spatial-temporal Autoregression Model Calculations 
To account for dependencies in both dimensions, 

a spatial temporal autoregressive model combines the 
ideas of time series autoregression (AR) and spatial 
autoregression (SAR). It is appropriate for datasets in 
which observations exhibit both temporal and spatial 
interdependencies. However, geographical dependencies 
were captured by employing the K-Nearest Neighbors 
(KNN) approach instead of a spatial weight matrix. 
Equations (7), (8), and (9) illustrate how the author 
employed latitude and longitude as spatial variables.

Ct = αC + β1Ct-1 + β2Lont-1 + β3Latt-1 + β4LAt-1 + β5Pt-1 + 

               β6Yt + ϵt                                                       (7)

Gt = αG + β1Gt-1 + β2Lont-1 + β3Latt-1 + β4LAt-1 + β5Pt-1 + 

               β6Yt + ϵt                                                       (8) 

Lt = αL + β1Lt-1 + β2Lont-1 + β3Latt-1 + β4LAt-1 + β5Pt-1 + 

               β6Yt + ϵt                                                       (9) 

Where: αC, αG, αL are the intercept terms for CPI, GPI, and 
LPI, respectively; β1 is the coefficient for the lag 1 term of 
the dependent variable; β2 is the coefficient for Longitude; 
β3 is the coefficient for Latitude; β4 is the coefficient for 
Agricultural Land; β5 is the coefficient for Pop%; β6 is the 
coefficient for Year (Yt); ϵt is the error term.

 
Spatial-temporal Vector Autoregression 
Model Calculations 

Data that fluctuates over time and space can be 
analyzed and predicted using a spatial temporal vector 
autoregression model. This model is useful for datasets 
where variables influence each other both time and 
geographically because it combines spatial and temporal 
dependencies into the classic vector autoregression 
framework. STVAR models handle several time series, 
each associated with a spatial location, in contrast to 
simple autoregression models, which deal with a single 
time series. In this implementation, the model to capture 
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illustration purposes, predicted vs actual values are 
presented below as Figure 1. 

 The x-axis contains all 162 countries, starting with 
Afghanistan and ending with Zimbabwe.

The following subsections provide a detailed 
examination of these findings in order: Time 
Decomposition, AR, VAR, STAR, STVAR, and a 
comparison of all of them.

Time Decomposition of CPI, GPI, and LPI
Time series decomposition is significant for several 

reasons. It helps find the data’s underlying patterns, which 
reveal the time series’ long-term trend and are critical 
for making strategic decisions. Decomposition is useful 
for data preparation because it enhances generalization, 
especially in AR, VAR, STAR, and STVAR models as it 
minimizes trend and seasonality. It also allows for a better 
understanding of certain periods of time by breaking 
down seasonal trends present in agricultural indices. 
Decomposing a time series also makes it easier to detect 
anomalies or outliers, which may represent substantial 
changes in the underlying process. Furthermore, it 
provides data feature insights that aid in the selection of 
appropriate forecasting models.

For illustration purposes, the time decomposition 
graph of CPI throughout the years 1990-2020 is provided 
below. A paragraph explaining the overall trend of CPI, 
GPI, and LPI is presented below Figure 2.

Each colored line is one specific country, and each 
graph contains 162 lines. For viewing reasons, the author 
could not include the legend with the graphs. Figure 2 
reveals that while the trend components show diverse 

Figure 1. CPI Predicted vs Actual Values for 2021.

Figure 2. Time Decomposition of CPI, GPI, and LPI throughout 
the years 1990-2020.
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patterns among different countries, there is a convergence 
towards the end of 2015, which could represent stability 
in the agricultural sector. Among CPI, GPI, and LPI, the 
seasonal components reflect inherent annual patterns in 
agricultural production. In addition, residual components 
for certain countries show variability around the mid-
2000s and early 2010s, which could suggest change/
shocks in the agricultural sector. Lastly, the cyclical 
components show varied cycles that also converge after 
2005, suggesting equal production cycles across countries 
in terms of CPI, GPI, and LPI. 

AR Model
Some cells in the table could not be filled out due to 

the nature of the AR model, as it can only predict values 
based on itself and other predictors (LA, P, and Y). As 
shown in Table 2, a positive coefficient represents a 
direct relationship while a negative coefficient means 
there is an inverse relationship between the predictor and 
dependent variable. The coefficients in Table 2 represent 
the estimated weight of each variable (C, G, L, LA, P, and 

Y) on the dependent variables (C, G, and L) within the AR 
model. Each coefficient indicates how much the dependent 
variable is expected to change when the corresponding 
independent variable increases by a unit.

As shown in Figure 3, the ACF and PACF plots for the 
residuals of CPI, GPI, and LPI models provide insights 

Figure 3. ACF and PACF plots for the AR model.

Table 2. AR Model Coefficients (Lag 1)
Variable CPI GPI LPI

C 0.302479 N/A N/A
G N/A 0.266464 N/A
L N/A N/A 0.035581

LA -0.117861 -0.080558 0.029737
P 0.018718 0.011047 0.014338
Y 0.003502 0.002946 0.001524

Note: N/A means Not Applicable. CPI is C; GPI is G; LPI is 
L; Land Area is LA; Pop% is P; Year is Y; Latitude is Lat; 
Longitude is Lon.
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into the autoregressive models used. The ACF plots have 
autocorrelation values that are in the 95% confidence 
intervals for almost all lags. As a result, this means that 
there is no significant autocorrelation left in the residuals, 
meaning that the residuals do not show patterns over 
time. This suggests that the AR models have effectively 
captured the temporal dependencies present in the data. 
Similarly, the PACF plots for CPI, GPI, and LPI indicate 
that the partial autocorrelations are also close to zero and 
within the confidence intervals. This further reinforces the 
conclusion that the AR models have sufficiently captured 
the temporal dependencies in the data. Because there are 
no significant autocorrelations, the chosen lag order of 10 
appears to be appropriate for these models. No significant 
autocorrelations in the residuals are a strong indication 
that the models accurately describe the underlying data-
generating processes, thus validating the AR models used 
for CPI, GPI, and LPI.

 
VAR Model

In this model, all cells could be filled because a 
VAR model predicts values based on itself and all other 
predictors/dependent variables (C, G, L, LA, P, and Y). 
As shown in Table 3, a positive coefficient represents a 
direct relationship while a negative coefficient represents 
an inverse relationship between the predictor and 
dependent variable. The coefficients in Table 3 represent 
the estimated impact of each independent variable (C, G, 
L, LA, P, and Y) on the dependent variables (C, G, and 
L) within the VAR model. Each coefficient indicates how 
much the dependent variable is expected to change when 
the corresponding variables increase by a unit.

Figure 4 shows the ACF plots for the residuals of 
CPI, GPI, and LPI, revealing significant autocorrelations 
at various lags. This suggests that the model has not 
fully captured all temporal dependencies in the data. 
The residual autocorrelation indicates the presence of 
patterns in the data that the current VAR model structure 
has failed to account for with its chosen number of lags. 
Similarly, the PACF plots in Figure 4 show significant 
partial autocorrelations at initial lags, indicating 
that autoregressive components remain unmodeled. 
Significant autocorrelations in the residuals affect the 
reliability of the VAR model’s forecasts, as it indicates 
that the model’s assumptions about the data structure are 
not accurate. Addressing these residual autocorrelations 
is important for improving the model’s predictive 
performance and ensuring that the forecasts are more 
reflective of the underlying processes. To improve the 
model, including additional lags or integrating other 

explanatory variables could better capture the underlying 
data patterns.

STAR Model
Some cells in the table could not be filled out due to the 

nature of the STAR model, which is an extension of an AR 
model. It can only predict values based on itself and other 
predictors (LA, P, Y, Lat, and Lon). As shown in Table 4, 
a positive coefficient represents a direct relationship while 
a negative coefficient represents an inverse relationship 
between the predictor and dependent variable. The 
coefficients in Table 4 represent the estimated impact 
of each independent variable (C, G, L, LA, P, Lat, Lon, 
and Y) on the dependent variables (CPI, GPI, and LPI) 
within the VAR model. Each coefficient indicates how 
much the dependent variable is expected to change when 
the corresponding independent variable increases by one 
unit, holding all other variables constant.

Table 3. VAR Model Coefficients (Lag 1)
Variable CPI GPI LPI

C 0.612 0.072 0.037
G 0.054 0.768 0.041
L 0.045 0.067 0.801

LA 0.038 0.059 0.029
P 0.029 0.034 0.019
Y 0.022 0.028 0.023

Note: CPI is C; GPI is G; LPI is L; Land Area is LA; Pop% is 
P; Year is Y; Latitude is Lat; Longitude is Lon.

Table 4. STAR Model Coefficients (Lag 1)
Variable CPI GPI LPI

C 0.187664 N/A N/A
G N/A 0.287112 N/A
L N/A N/A 0.376484

LA 0.077 0.694 -0.072
P -0.020037 -0.037966 -0.026498
Y 0.190 0.292 0.380

Lat 0.084384 0.707508 -0.062843
Lon 0.617841 -0.005549 0.064824

Note: N/A means Not Applicable. CPI is C; GPI is G; LPI is 
L; Land Area is LA; Pop% is P; Year is Y; Latitude is Lat; 
Longitude is Lon.
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Figure 5 presents the ACF and PACF plots of the 
residuals for the STAR model. These plots reveal the 
presence of significant autocorrelation in the model 
residuals. The significant spikes in the ACF plots 
indicate that the residuals are correlated with their own 
lagged values, suggesting that the model may not have 
fully captured the temporal dependencies present in the 
data. This is shown in the repeated patterns/correlations 
extending beyond the immediate lags. The PACF plots 
further highlight these direct relationships between 
residuals and their lags. The presence of many significant 

spikes beyond the confidence intervals in both ACF and 
PACF plots implies that the residuals are not purely 
random, suggesting that the model requires further 
adjustments to better capture the temporal dependencies. 
Potential improvements could include increasing the 
number of lags in the STAR model or incorporating 
additional variables that account for other influences. 
Addressing these issues is important to ensure that 
the model adequately represents the data’s underlying 
dynamics, enhancing the accuracy and reliability of its 
forecasts for CPI, GPI, and LPI. 

Figure 4. ACF and PACF plots for the VAR Model.
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STVAR Model
In this model, all cells could be filled because a 

STVAR model predicts values based on itself and all other 
predictors/dependent variables (C, G, L, LA, P, Y, Lat, 
Lon). A STVAR model is an extension of a VAR model, 
resulting in a similar framework between the two models. 
As shown in Table 3, a positive coefficient represents a 
direct relationship while a negative coefficient represents an 
inverse relationship between the predictor and dependent 
variable. The coefficients in Table 3 represent the estimated 
impact of each independent variable (C, G, L, LA, P, Y, 
Lat, Lon) on the dependent variables (C, G, and L) within 
the STVAR model. Each coefficient indicates how much 
the dependent variable is expected to change when the 
corresponding variables increases by a unit.

Figure 5. ACF and PACF plots for the STAR Model.

Table 5. STVAR Model Coefficients (Lag 1)
Variable CPI GPI LPI

C 0.433631 0.505003 0.732712
G 0.132969 0.105932 -0.135526
L -0.174278 -0.135387 0.133167

LA 0.068674 0.079480 -0.013817
P -0.131694 -0.463150 -0.412940
Y 0.056673 0.052493 0.035467

Lat -0.046180 -0.017709 0.038287
Lon 2.217052 3.071508 4.318859

Note: CPI is C; GPI is G; LPI is L; Land Area is LA; Pop% is 
P; Year is Y; Latitude is Lat; Longitude is Lon.
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Figure 6 provides critical insights into the perfor-
mance of the STVAR model. If the residuals exhibit 
significant autocorrelation, it suggests that the model 
has not fully captured the underlying temporal structure 
of the data, indicating that the model might be missing 
some key patterns. However, in Figure 6, the ACF and 
PACF plots for the residuals of CPI, GPI, and LPI shows 
the absence of significant spikes beyond the initial lag, 
indicating that the residuals do not exhibit significant 
autocorrelation. This demonstrates that the STVAR model 
has adequately captured the temporal dependencies in 
the data for these variables, and the remaining residuals 
are approximately white noise. However, small, random 
spikes might indicate minor dependencies, but overall, the 
results suggest a strong model performance. The lack of 
autocorrelation in the residuals suggests that the model 
is effective in capturing the spatiotemporal structure of 
the data, enhancing the model’s validity and reliability in 
making accurate predictions.

Comparison of Models (Table 6)

CONCLUSIONS AND RECOMMENDATIONS

Table 6 offers a comprehensive evaluation of the 
AR, VAR, STAR, and STVAR models using several 
performance metrics. The AR model demonstrates 
the lowest values in terms of MAE (0.538220), MSE 
(0.513730), and RMSE (0.687246), indicating that it has 
the smallest prediction errors among the models. However, 
it’s extremely negative R-squared (-0.874531) and Adjusted 
R-squared (-0.877447) values suggest that the model fits 
the data very poorly, implying that it fails to capture the 
underlying trends despite its lower error metrics.

Next, the VAR model shows higher error metrics 
(MAE of 0.636, MSE of 0.741, and RMSE of 0.861) 
compared to AR but has slightly better fit metrics with 
R-squared (-0.743) and Adjusted R-squared (-0.746) values 
that, while still negative, are less extreme than those of 

Figure 6. ACF and PACF plots for the STVAR Model.
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AR. This indicates that VAR may provide a somewhat 
better balance between prediction accuracy and model fit, 
though it still performs poorly in terms of fitting the data.

The STAR model presents the highest error metrics 
(MAE of 0.659, MSE of 0.962, and RMSE of 0.980), 
indicating poorer prediction accuracy. Its R-squared 
value (-4.437) is significantly negative, suggesting an 
extremely poor fit to the data. However, the STAR model 
has a positive Adjusted R-squared (0.605) and a very 
low P-value (1.32e-14), indicating that its coefficients 
are statistically significant, which might imply some 
usefulness in other situations despite the overall poor 
performance metrics. However, the extremely low P-value 
may be due to miscalculations during the evaluation.

Finally, the STVAR model provides a more balanced 
performance. It has relatively low error metrics (MAE of 
0.603, MSE of 0.889863, and RMSE of 0.941353), which 
are better than those of VAR and STAR but slightly 
worse than AR. Importantly, its R-squared (-0.012246) 
and Adjusted R-squared (-0.072710) values are the least 
negative among the models, suggesting that it fits the data 
better than the other models. Additionally, the P-value 
(0.019180) indicates that the coefficients of the STVAR 
model are statistically significant.

In summary, while the AR model excels in terms 
of minimizing prediction errors, it’s very poor fit to 
the data as indicated by the negative R-squared values 
undermines its overall utility. The VAR model offers a 
small improvement in terms of fit but still suffers from 
high error metrics. The STAR model, despite having 

significant coefficients, performs poorly overall. However, 
for the STVAR model, its less negative R-squared values 
and significant P-value provides a good balance between 
relatively low prediction errors and the best fit to the data. 
Therefore, considering all metrics, the author selected the 
STVAR model as the best option out of the four models, 
as the model is the most balanced and potentially the most 
effective/accurate model for this data. 

To further improve the STVAR model, several 
strategies could be considered. Firstly, increasing the order 
of temporal lags may capture more complex temporal 
dependencies, potentially enhancing the model’s fit and 
predictive power (12). Secondly, incorporating additional 
relevant predictors or variables could help explain more 
variability in the dependent variable, thereby improving the 
R-squared values (13). Adding more variables could also 
improve accuracy, as it allows the model to capture hidden 
patterns/dependencies in the data. Additionally, applying 
more techniques such as cross-validation could optimize 
the model’s parameters and prevent overfitting (14). Finally, 
experimenting with different nonlinear transformations 
or interaction terms could uncover hidden patterns in the 
data, leading to better model accuracy and fit (15).
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Table 6. AR, VAR, STAR, and STVAR Model Metrics
Metric AR VAR STAR STVAR
MAE 0.538220 0.636 0.659 0.603
MSE 0.513730 0.741 0.962 0.889863

RMSE 0.687246 0.861 0.980 0.941353
R-squared -0.874531 -0.743 -4.437 -0.012246

Adjusted R-squared -0.877447 -0.746 0.605 -0.072710
P-Value 0.406623 0.149 1.32e-14 0.019180

AIC 8157.199 -3.021 8216.454 10572.249
BIC 14450.357 -2.955 8247.955 10945.299

Order of Temporal Lags 10 15 1 5
Note: MAE represents Mean Absolute Error, MSE means Mean Squared Error, and RMSE 
means Root Mean Square Error. The metrics are calculated using standardized data and 
presented as the average for AR and STAR models. P-values are presented as the averages 
among all temporal lags for the dependent variables (CPI, GPI, and LPI).



Space-Time Consideration of Global Agriculture Development

August 2024    Vol. 2 No 2    American Journal of Student Research    www.ajosr.org 63

REFERENCES

1.	 Xu SW, LI GQ LI ZM. China agricultural outlook for 
2015–2024 based on China Agricultural Monitoring and 
Early-warning System (CAMES). Journal of integrative 
agriculture. 2015; 14 (9): 1889-1902.

2.	 World Bank Group. (2024). https://www.worldbank.org/
en/topic/agriculture/overview (Accessed May 22, 2024).

3.	 Dorward AR, Kirsten JF, Omamo SW, Poulton C & Vink 
N. Institutions and the agricultural development challenge 
in Africa. Institutional economics perspectives on African 
agricultural development. 2009; 1: 3-34.

4.	 Lütkepohl H. New Introduction to Multiple Time Series 
Analysis. Springer. 2005.

5.	 Zeng C, Zhang F & Luo M. A deep neural network-based 
decision support system for intelligent geospatial data 
analysis in intelligent agriculture system. Soft Computing. 
2022; 26 (20): 10813-10826.

6.	 Smith J, Johnson A & Lee C. Integrating temporal data 
into predictive models for improved agricultural decision-
making. Journal of Sustainable Agriculture. 2020; 10 (3): 
123-135.

7.	 Kamilaris A & Prenafeta-Boldú FX. Deep learning in agri-
culture: A survey. Computers and Electronics in Agricul-

ture. 2018; 147: 70-90.
8.	 Aljandali A & Tatahi M. Economic and financial model-

ling with EViews: A guide for students and professionals. 
Springer. 2018. https://doi.org/10.1007/978-3-319-92985-9.

9.	 Wolfmedal. (n.d.). Rural Development Dataset. Kag-
gle. Retrieved June 20, 2024, from https://www.
kaggle.com/datasets/wolfmedal/rural-development-
dataset?resource=download (accessed on May 22, 2024).

10.	 World Bank. The impact of population dynamics on 
agriculture. World Bank Agriculture Reports. 2018.

11.	 Smith J, Lee K & Johnson H. The impact of agricultFural 
land on production capacity. Agricultural Studies Quarterly. 
2016; 30 (4): 789-804.

12. Koop G & Korobilis D. Bayesian Multivariate Time Series 
Methods for Empirical Macroeconomics. Foundations and 
Trends® in Econometrics. 2018; 10 (3-4): 249-345.

13.	 Stock JH & Watson MW. Introduction to Econometrics 
(4th ed.). Pearson. 2020.

14.	 Hastie T, Tibshirani R & Friedman J. The Elements 
of Statistical Learning: Data Mining, Inference, and 
Prediction (2nd ed.). Springer. 2017.

15.	 Fan J, Liao Y & Yao Q. An Overview of the Estimation 
of Large Covariance and Precision Matrices. The 
Econometrics Journal. 2019; 22 (1): 89-116.


