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ABSTRACT

The rise of predictive maintenance models has revolutionized vehicle maintenance, promising significant 
improvements in performance and lifespan. This research aims to develop a robust predictive maintenance 
model for automotive engines using a hybrid approach that combines neural networks and logistic regression 
models. By analyzing patterns within a publicly available dataset of 19,503 engine cases, which includes 
features such as engine rotations per minute, temperatures, and pressures, the study trains hybrid models to 
predict when a vehicle requires maintenance. 

The methodology involves preprocessing the dataset, training individual models, and integrating them 
within a stacked ensemble framework. Neural networks are leveraged for their complex pattern recognition 
capabilities, and logistic regression models offer interpretability and simplicity. Metrics such as accuracy, 
precision, and recall evaluate the models’ performance. 

The ultimate goal is to enable vehicle owners and mechanics to address potential issues proactively, 
ensuring better vehicle performance and extending engine lifetimes. The hybrid models show enhanced 
success compared to traditional models, providing potential contributions to predictive analytics, and a new 
standard for various industries.
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INTRODUCTION

As is well known, the vehicle has played an essential 
role in almost every aspect of our daily life for different 
transportation needs, including education, grocery 
shopping, work, entertainment, and so on. Unfortunately, 
similar to most other manufactured products, the vehicle 

has a certain lifespan with influential factors containing 
usage frequency, material quality, driving pattern, etc. 
Amongst all these factors, the maintenance may weigh in 
with a large extent for the extension of the vehicle’s life. 
In the past, different vehicle maintenance practices have 
been employed, ranging from relatively simple manual 
ones to more sophisticated ones due to the increasing 
complexity of the associated system (1). Usually, the 
Vehicle manufacturers will provide detailed maintenance 
schedules, recommend regular check-ups, and predict the 
vehicle’s performance and longevity.

The accuracy prediction of vehicle maintenance is 
essential in improving vehicle performance for several 
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benefits, such as early detection of issues, optimal 
component functioning, and minimized downtime, 
thus ensuring that the vehicle remains operational and 
performs reliably. Nonetheless, the traditional preventative 
methods have proven inconsistent and sometimes biased 
by personal judgment, mainly due to the need for more 
understandable data. The expected consequences include 
unexpected downtime, higher repair costs, extensive 
safety risks, and inefficient resource use (2). Therefore, 
the need for more advanced, data-driven maintenance 
strategies is urgent.

Many modeling-related methods have been proposed 
with the current advances in data collection and analysis 
technologies. Some of them use statistical models like 
linear regression (3), data mining (4, 5, 6), and machine 
learning-related technologies (7, 8, 9). However, different 
types of methods are associated with different strengths 
and weaknesses. For example, while statistical modeling 
has strengths in hypothesis testing, interpretability, and 
theoretical foundation, it often needs more flexibility, 
scalability, and performance than data mining and 
machine learning techniques. Also, while data mining 
excels in discovering patterns and relationships within 
large datasets, it needs to improve in theoretical grounding, 
interpretability, risk of overfitting, and integration 
complexity compared to statistical modeling and machine 
learning. Similarly, machine learning is highly effective 
for predictive modeling and handling complex, high-
dimensional data. However, interpretability, theoretical 
grounding, risk overfitting, computational resource 
demands, and deployment complexity are weaknesses 
compared to statistical modeling and data mining (10).

To address the weaknesses associated with individual 
methods, a better alternative is to combine the strengths of 
the different techniques. To the author’s best knowledge, 
there is a rare use of such hybrid approaches in vehicle 
maintenance prediction in the current literature. To fill 
the research gap, the author proposed fused methods 
that integrate machine learning and statistical modeling 
advantages. Specifically, neural networks and logistic 
regression are selected to represent machine learning and 
statistical modeling, respectively, due to their popularity 
and ease of implementation. Also, a set of performance 
metrics, including accuracy, precision, and recall, is chosen 
to compare individual methods’ and hybrid approaches’ 
modeling performance. Finally, the paper selects the 
engine as the testbed to demonstrate the performance of the 
proposed approach. This predictive model is anticipated 
to help vehicle owners and mechanics proactively address 
potential issues before they become severe, enhancing 

vehicle performance and extending engine lifetimes. 
Extending past the realm of vehicle engines, this paper’s 
exploration of hybrid predictive models hopes to guide 
its consideration and implementation of other research 
projects. 

The following paper is structured as follows: First, 
a data description is provided to show the different 
predictors and targets of the data. Then, the methodology 
is provided to show the details of preprocessing steps, 
modeling training procedures, and the hybrid approach 
used. Then, the detailed evaluation results of the model 
are presented, followed by the discussion and conclusion 
of the findings and potential use cases for hybrid models. 

DATA DESCRIPTION

It is an essential foundation for implementing this 
research to have a reliable and understandable dataset. 
Through extensive search, the author found a compatible 
dataset from the esteemed data library Kaggle that 
perfectly satisfies the aforementioned research need. First, 
this dataset includes various features and measurements 
related to the engine health of vehicles, such as engine 
rotations per minute, pressure, temperature, and engine 
condition. Second, it consists of a large sample size 
(19,503) across different models, years, and mileage, 
providing the needed diversity of vehicles (11). 

The detailed descriptive statistics of the data used are 
shown in Table 1.

The goal of this research extends beyond engine 
maintenance prediction due to its alternate focus on the 
potential advantages of hybrid data models. Instead of 
collecting and testing thousands of engines, the author 
chose an observational study, which can be completed 
much faster with a much smaller budget. One potential 
limitation of the dataset on engine maintenance is the 
relatively low number of variables. A lack of variables may 
lead to a less accurate model as some influential factors 
may not be in the dataset. However, this simplicity also 
makes it much more practical to analyze the effectiveness 
of hybrid data models on a variable-by-variable basis. 

METHODOLOGY

Four different types of models will be created, and the 
data above will be used to predict engine conditions. In 
each model, 80% of the data will be used for training, 
and the remaining 20% will be used for testing. To ensure 
fairness across all models, the data will be split based on 
seeds so that each model will get the same training and 
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testing data (12). Additionally, each model will be run 
through eight random seeds to examine its consistency. 
Therefore, the results will reflect the applicability of the 
models to this dataset in a controlled manner.

The methods employed will be logistic regression, 
neural network, and two different combinations of the 
two previous methods (or the hybrid ones). As this paper 
aims to test the potential added effectiveness of merging 
models, the base logistic regression and neural network 
models will act as a control to compare with hybrid 
models. For the models ending in logistic regression, each 
feature will have its coefficient, standard error, z-value, 
p-value, and 95% confidence intervals displayed. These 
results will also be shown for the intercept. Graphs will 
represent the training and validation loss of the neural 
networks, and the absolute weights of each feature will 
be calculated through the weight matrices by finding the 
mean of the absolute values of the associated weights. 
The absolute value is used because it demonstrates how 
influential each feature is to the decision of the neural 
network.

Then, all models will be evaluated in comparison to 
each other. The accuracy will be estimated based on the 
proportion of how many of its guesses were correct in 
the testing data. Precision will be the proportion of true 
positives out of all positive predictions. Recall will be the 
proportion of true positives out of all positives.

Logistic Regression 
Logistic regression was developed as an alternative to 

the probit model for prediction and classification in 1944 
from the work of Joseph Berkson (13). A generalized linear 
model, logistic regression is a tried-and-tested, simple, 
fast, and efficient method. Its prediction works through 

an equation consisting of the sum of multiple features, 
each with its own coefficient, often including an intercept. 
(14). The binary nature of the dataset’s “engine condition” 
output variable makes logistic regression a prime model, 
as the predictions will range between zero and one. This 
model will also output results that provide insight into 
how each variable impacts the outcome, giving an easy 
metric to compare to another model (15).

For this model, the formula is:

logit(P(EC=1)) = β0 + β1 × ERPM + β2 × LOP + β3 × FP 

                     + β4 × CP + β5 × LOT + β6× CT            (1)

Where β0 is the intercept and β1 to β6 are the coefficients of 
each variable. The variable descriptions are listed above 
in Table 1.  

Neural Network
Both logistic and neural networks are great models 

for binary classification (16). While neural networks 
require more computation, they can find more complex 
relationships between features and the output. In contrast, 
logistic regression models can only find linear relations 
between features and the target. However, it is much 
harder to interpret how a neural network gets to its output 
from its input. Neural networks consist of multiple layers, 
each with nodes connected to every other node in the 
preceding and following layer. Between the input and 
output, there is a significant quantity of connections that 
are difficult to comprehend fully due to a vast amount of 
weighted parameters and paths that are difficult to trace. 
These are the hidden layers; a black box or a simple 
diagram often represents them. (17)

Table 1. Descriptive Statistics of the Variables Used for the Data
Variables Description Minimum Maximum Mean S.D.

ERPM Engine rotations per minute 61.00 2239 791.2 267.6
LOP Lubricant oil pressure 0.0034 7.266 3.304 1.022
FP Fuel pressure 0.0032 21.14 6.656 2.761
CP Coolant pressure 0.0025 7.479 2.335 1.036

LOT Lubricant oil temp 71.32 89.58 77.64 3.111
CT Coolant temp 61.67 195.5 78.43 6.207
EC Engine Condition 0.000 1.000 0.6305 0.4827

Notes: 1. S.D. represents the standard deviation; 2. Engine Condition is a binary value with 1 demonstrating 
a need for maintenance.
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outputs for each set of inputs are saved. This data is then 
used as a seventh input node in a new neural network, 
replicating the structure of the previous neural network 
aside from the additional input. The implementation of 
logistic regression into a neural network model is shown 
in Figure 2.

 
Hybrid Model 2: Neural Network into 
Logistic Regression

In contrast to the first hybrid model, this one starts 
with the first neural network and then uses the result as 
a feature for a logistic regression model. The logistic 
regression model could provide more in-depth results 
of each variable concerning the neural network and 
tune the results (21). After the neural network model is 
completed, the output is used in a slightly altered version 
of the original logistic regression model represented by 
the following equation. 

logit(P(EC=1)) = β0 + β1 × ERPM + β2 × LOP + β3 × FP 

          + β4 × CP + β5 × LOT + β6 × CT + β7 × NN    (2)

Compared with Equation 1, Equation 2 is slightly 
different as it has β7 × NN added, where NN is the Figure 
1 below output and β7 is its coefficient. Below, Figure 3 
demonstrates the inputs of the logistic regression model, 
which includes the six features of the dataset and the 
results of the previous neural network model. 

For the model to capture a wide array of relations, it 
will be trained with two hidden layers connecting the 
inputs to the output. Using two layers allows for multiple 
stages of data abstraction while not requiring an immense 
amount of computing. This neural network will have two 
hidden layers of 64 and 32 sizes respectively. The large 
amount of neurons in the first hidden layer will find an 
extensive range of patterns, while the second smaller 
layer will refine the results. (18). While there are many 
hidden layer nodes compared to the input layer size, there 
is a vast amount of training data, and the model uses early 
stopping and cross-validation to prevent overfitting (19).

A neural network predicts the “engine condition,” 
with the six other variables as the inputs. The output 
node will conclude with a value between zero and one as 
a probability of the engine requiring maintenance. When 
calculating the model results, a probability value of 0.5 
or greater will be considered a prediction of requiring 
maintenance. Figure 1 represents the structure of the 
neural network. 

 
Hybrid Model 1: Logistic Regression into 
 Neural Network

As shown before, the output of the logistic regression 
model demonstrated a multitude of linear relations. It 
relates the features to the engine condition, but there may 
be more connections that are not linear. In this method, the 
logistic regression model can serve as a strong base as an 
input to the neural network mode, while the neural network 
may continue to refine the results through its training 
(20). Once the logistic regression model is finished, its 

Figure 1. Neural Network Diagram. 
Note: For illustration convenience, each node in the hidden 
layers represents eight nodes.

Figure 2. Hybrid Model 1 Diagram.
Notes: 1. For illustration convince, each node in the hidden 
layers represents eight nodes; 2. The node labeled LR 
represents the output of the logistic regression model being 
used as an input for the neural network.
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RESULTS

First, the results of the logistic regression model and 
Hybrid Model 2 will be compared. Since Hybrid Model 
2 is essentially the logistic regression model with an 
additional input from the neural network model’s output, 
both models yield similar types of results, such as 
p-values and coefficients. These results will be evaluated 
and compared.

Next, the results of the neural network model amd 
Hybrid Model 1 will be compared. Hybrid Model 1 is a 
neural network model that incorporates the output of the 
logistic regression model as an additional input. Metrics 
such as weights, training loss, and validation loss will be 
evaluated and compared.

Finally, the paper will discuss metrics common to 
all models, including accuracy, precision, and recall. 
Descriptive statistics, such as mean, maximum, and 
minimum values for each metric will be evaluated and 
compared. The analysis will determine the most and least 
successful models. 

Logistic Regression Results
In review of Table 2, the coefficient represents the 

change in engine condition for each unit of change for the 
feature. ERPM has a negative coefficient, which indicates 
that the higher the ERPM value, the lower the engine 
condition value. Alongside its statistical significance, an 
engine with a higher ERPM value is significantly less 
likely to require maintenance. CP and LOT also have 

Figure 3. Hybrid Model 2 Diagram. 

Table 2. Logistic Regression Results
Feature Coef Std. Error Z-value P-value 95% CL L 95% CL U
Intercept 2.3390 0.4834 4.8671 0.6144 1.3914 3.2865
ERPM -0.0021 0.0001 -31.5028 <0.0001 -0.0023 -0.0020
LOP 0.1599 0.0172 9.2824 <0.0001 0.1261 0.1936
FP 0.1038 0.0068 15.2963 <0.0001 0.0905 0.1171
CP -0.0607 0.0167 -3.6331 0.0021 -0.0934 -0.0280

LOT -0.0153 0.0056 -2.7899 0.1128 -0.0262 -0.0044
CT 0.0005 0.0028 0.1613 0.0237 -0.0051 0.0060

Notes: 1. Refer to Table 1 for variable descriptions; 2. The bolded p-values represent a feature 
of statistical significance at the level of 0.05; 3. Coef. Represents coefficient; 4. CL L and CL U 
represents the lower and upper ends of the confidence level.



Hybrid Statistical Learning and Vehicle Motor Maintenance

August 2024    Vol. 2 No 2    American Journal of Student Research    www.ajosr.org 69

negative coefficients while LOP, FP, and CT have positive 
coefficients. Therefore, an engine with higher CP and 
LOT will be less likely to need maintenance while an 
engine with higher LOP, FP, and CT will be more likely 
to need maintenance. The intercept starts at 2.339 and the 
prediction value is brought down to a value between zero 
and one by the other features. 

 In the review of Table 3, the most influential feature 
in this model is the neural network due to its high 
coefficient and low p-value. The neural network has a 
very high and positive coefficient. All the other features 
have negative coefficients, suggesting that the neural 
network overestimates the engine condition as requiring 
maintenance more often than it doesn’t. The coefficients 
and p-values strongly differ from the logistic regression 
model as their purpose in this logistic regression model is 
to refine the results of the neural network. 

The logistic regression model has multiple statistically 
significant features. On the other hand, Hybrid Model 2 
only has one statistically significant feature not including 
the neural network or the intercept. While the logistic 
model uses the features for its predictions, Hybrid Model 
two only slightly considers the other features, mainly 
determining its output based on the neural network’s 
output. 

Neural Network Results
As the neural networks were going through their 

validation and training phases, the losses were recorded. 
The results are displayed in Figures 4 and 5 below. 

 In Figures 4 and 5, the training loss in the neural 
network and Hybrid Model 1 quickly drops off before 

ending at around 0.59. The validation loss oscillates around 
0.60. While the neural networks were allowed to run for 
up to 1000 epochs, they stopped at around 100 to prevent 
overfitting, so more epochs would unlikely make the 

Figure 4. FNeural Network Training and Validation Loss. 

Figure 5. Hybrid Model 1 Training and Validation Loss. 

Table 3. Hybrid Model 2 Logistic Regression Results
Feature Coef Std. Error Z-value P-value 95% CL L 95% CL U

NN 4.7675 0.4187 12.2896 <0.0001 3.9468 5.5882
Intercept 2.5444 0.5568 4.5126 0.0038 1.4531 3.6357
ERPM -0.0003 0.0002 -4.3468 0.1346 -0.0006 <0.0001
LOP -0.0149 0.0221 -0.4800 0.1397 -0.0583 0.0284
FP -0.0006 0.0107 0.2045 0.2870 -0.0215 0.0203
CP -0.0144 0.0175 -0.8359 0.5126 -0.0488 0.0198

LOT -0.0514 0.0056 -9.1933 <0.0001 -0.0625 -0.0405
CT -0.0098 0.0029 -3.4134 0.0501 -0.0154 -0.0042

Notes: 1. NN stands for neural network; 2. Refer to Table 1 for variable descriptions; 3. The bolded 
p-values represent a feature of statistical significance at the level of 0.05. 4. Coef. Represents coefficient; 
5. CL L and CL U represent the lower and upper ends of the confidence level.
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neural network more accurate. The training loss getting 
lower represents the neural network model adapting to the 
training data, but the consistency in validation loss shows 
that more epochs are not necessarily helping the model be 
accurate.

Based on the absolute weights in Table 4, the engine 
rpm is the most influential feature in the neural network, 
Similar to the logistic regression model. However, the 
differences between the absolute weights of the features 
in the neural network are minor. Each feature noticeably 
contributes to the final decision of the neural network. 

The logistic regression output has a comparable 
absolute weight to the other features. It is considered in 
the final output but not the major deciding factor, unlike 
the role the neural network plays in Hybrid Model 2. 

Compared to the neural network model, the feature 
weights in Hybrid Model 1 generally have slightly lower 
values due to the added logistic regression model’s 
weight. Engine rpm has the highest feature weight in both 
of the neural network models and coolant pressure has the 
lowest weight. However, coolant temp has a relatively high 
weight for Hybrid Model 1 while it has a lower weight 
for the base neural network model. The weight values are 
likely altered based on how much the logistic regression 
model overestimated or underestimated the importance of 
a feature. 

All Models Evaluation 
Each model was run through 8 different permutations 

of the data randomly being split into the training and 
testing groups. These splits of data are controlled by being 
associated with a seed, which allows each model to use the 
same 8 sets of data. In this section, descriptive statistics 
for each model on each seed are taken and evaluated.

  As shown in Table 5, the accuracies across the 
methods range between 0.6532 and 0.6734. While the 
accuracy differences are minimal, the hybrid techniques 
show a noticeable improvement compared to the logistic 
regression and neural network models. Specifically, 
HM1 has the most excellent performance in terms of 
minimum and mean accuracy, while it is tied with HM2 
for the highest maximum accuracy. On the other hand, 
HM2 has the lowest standard deviation. Therefore, using 
hybrid models accomplishes improvements in model 
performance with this dataset. 

In Table 7, the model with the best statistic in precision 
has the worst value of that statistic for recall. Often, 
having higher precision results in a lower recall and 
vice versa. There is no model with a clear advantage in 
both the precision and recall measurements. However, it 

Table 4. Neural Network Feature Absolute Weights

Feature Absolute 
Weight NN

Absolute 
Weight HM1

Engine rpm 0.1647 0.1595
Fuel pressure 0.1624 0.1427
lub oil temp 0.1521 0.1579

Lub oil pressure 0.1477 0.1365
Coolant temp 0.1458 0.1573

Coolant pressure 0.1431 0.1292
log_reg_probs DNE 0.1446

Note: log_reg_probs represents the output of the logistic 
regression model; 2. NN stands for neural network; 3. HM1 
stands for Hybrid Model 1.

Table 5. Descriptive Statistics of Each Method’s 
Accuracy Measurements
LR NN HM1 HM2

Maximum 0.6685 0.6732 0.6734 0.6734
Minimum 0.6532 0.6573 0.6596 0.6586

Mean 0.66054 0.66724 0.66756 0.66468
S.D. 0.00466 0.00512 0.00479 0.00432

Notes: 1. S.D. stands for standard deviation, LR stands for 
logistical regression,  NN stands for neural network, HM1 
stands for Hybrid Model 1, and HM2 stands for Hybrid 
Model 2; 2. The best value of each statistic is bolded and the 
worst value is highlighted.

Table 6. Descriptive Statistics of Each Method’s 
Precision Measurements

LR NN HM1 HM2
Maximum 0.6863 0.7097 0.7067 0.6979
Minimum 0.6689 0.6915 0.6893 0.6779

Mean 0.67726 0.69886 0.69670 0.68917
S.D. 0.00587 0.00553 0.00576 0.00610

Notes: 1. S.D. stands for standard deviation, LR stands for 
logistical regression,  NN stands for neural network, HM1 
stands for Hybrid Model 1, and HM2 stands for Hybrid 
Model 2; 2. The best value of each statistic is bolded and the 
worst value is highlighted.
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is clear that all models have higher recall than precision 
measurements, meaning that they are better at predicting 
a model that requires maintenance than a model that does 
not require maintenance. 

Table 1 for the data description shows that around 63% 
of the engines in the dataset require maintenance, which 
could explain why these models are better at correctly 
detecting when an engine needs maintenance than when 
it does not as more engines require maintenance than 
those that do not. It is likely that as the training data had 
more engines requiring maintenance, the final models are 
better tuned to finding engines that require maintenance. 

CONCLUSIONS AND RECOMMENDATIONS

All four models had similar accuracies, around 66%, 
which could result from a need for more data. There 
may be more significant outside factors not included in 
the dataset that impact whether or not an engine requires 
maintenance. However, this percentage of average 
accuracy among many seeds and the thousands of data 
points strongly indicates an influential impact of the 
six given variables on the engine condition. Due to the 
questionable accuracy rate, the outputted model could 
see much improvement in practically predicting engine 
maintenance. This model could likely see an improvement 
in its accuracy if the dataset had more variables. 

Though minimal, results such as accuracy display 
that hybrid models of logistic regression and neural 
networks show a clear improvement compared to their 
individual parts. This research goes beyond engines as it 
provides a basis for a deeper exploration of hybrid data 
models due to their slight edge over traditional models. 

The implementation of another model as a feature in an 
alternate model is a technique that can be used for many 
other models, and therefore potentially utilized in many 
forms of datasets. Specific models can be put into a 
hybrid model based on how they complement each other’s 
strengths and weaknesses. 

While proving to have an edge in accuracy, hybrid 
models face the limitation of requiring more training as 
they contrive of extra parts. This could be a dealbreaker 
in situations where massive amounts of data has to be 
processed due to the extra computing or time requirements. 
Additionally, the results of a hybrid model is more difficult 
to comprehend as the results of each model affects the 
other. If the goal of a data model is to see how impactful 
individual features are, it would be better to only use a 
singular simplistic model such as a logistic regression 
model. 

Hybrid models hold much potential for widespread 
applications and should be a subject of interest for future 
research. While more complicated, the slight increase 
in accuracy from hybrid models can be substantial in 
fields such as medical diagnosis, where each percentage 
of accuracy is exceedingly important. It is possible that 
hybrid models may have much higher accuracies with 
specific datasets, but the opposite could also be true, 
where hybrid models are less accurate with other datasets. 
Therefore, also using the models that the hybrid models 
are contrived of is important as a point of comparison for 
the hybrid model’s improvement.
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